LA SCIENCE SPIRITUALISTE PAR

le Dr FUGAIRON
Docteur ès-soiences et Dooteur en médeoine.

PREMIER MÉMOIRE

ESSAI

DE
CHIMIE PHILOSOPHIQLE
OU

ALCHIMIE

1901

Google

481903

Extrait de L'HYPERCHIMIE

HYLOZOÏSME

LA CONSTITUTION GÉNÉRALE DES CORPS.
LA TRANSMUTATION.

Avant d'entrer en matière, afin d'éviter désormais toute équivoque, qu'il me soit permis de faire ici ma profession de foi philosophique.

Presque tous les alchimistes ont été des disciples du pantheisme oriental, système perfectionné par Plotin à l'époque alexandrine au moyen des philosophies de Platon, d'Aristote et de Zénon ; système qui a dégénéré entre les mains des successeurs de Plotin, des gnostiques de la même époqué $=$-et des judéo-chrétiens ;
système qui a reparu avec des modifications diverses à la renaissance, au XVIII• et au XIX• siècles, et qui compte encore de nos jours des partisans. Il a fait les délices des mystiques de tous les temps qui ont pu lui faire subir toutes les modifications conformes à leurs rêverieş. Aujourd'hui même ses partisans ne le présentent pas sous la forme hautement philosophique que lui avait donnée Plotin, mais sous les formes aberrantes avec lesquelles il se présente dans les productions les plus basses de l'époque néoplatonitienne, je veux dire dans les livres Orphiques, Hermétiques, Sibyllins et dans la Cabale retouchée par les auteurs du XIII ${ }^{\circ}$ siècle.

Quoique convaincu de la possibilité de la transmutation des corps dits élémentaires par les chimistes et partisans de la theorie de l'hylozoïsme, je ne puis donner mon approbation, même la plus facile, à cette réapparition du panthéisme oriental. Certes, chacun est libre d'adopter la philosophie qui lui plaît, mais quant à moi je repudie hautement toute attache avec ce panthéisme. Les philosophes n'ont

- 3 -

jamais pu donner que trois explications systématiquesde l'univers: le panthéisme, le matérialisme ou l'athéisme, le spiritualisme ou théisme. Cela prouve que la vérité se trouve dans les trois systèmes, mais non dans l'un d'eux en particulier. Après la critique philosophique moderne, ce sérait folie de vouloir adopter un système à l'exclusion des autres. Nous ne pouvons donc que nous rallier à une philosophie synthétique qui ne soit aucun des trois systèmes en particulier et qui, dans son unité, les comprenne tous les trois. Or deux philosophes seulement, à ma connaissance, ont tenté d'exposer une semblable philosophie ; c'est en Allemagne, Krause, et, en France, Allaux. Tous deux se sont placés, il est vrai, à un point de vue un peu différent; je les ai combinés. Maintenant si l'on ne veut pas se rallier à cette philosophie, il n'y en a plus qu'une où l'on puisse se réfugier, c'est le pseudoscepticisme avec toutes ses nuances qui vont du positivisme d'Auguste Comte au criticisme de Renouvier, mais alors, il n'y a plus de doctrine religieuse possible.

- 4 -

Agir autrement serait faire table rase de toute la philosophie moderne, soit de parti-pris, soit parignorance. J'ai toujours fait mes efforts pour n'etre accusé ni de l'un, ni de l'autre, et je veux rester homme de mon temps.
Cela posé, je ne fais aucune difficulté dadmettre, avec M. Jollivet Castelot, l'eminent directeur du journal l'Hyperchimie, qu'un alchimiste est un philosophe faisant de la chimie, tandis que les chimistes sont des expérimentateurs essayant quelquefois de faire de la philosophie. En effet, toutes les fois qu'un chimiste fait une dissertation sur la constitution intime et ultime des corps il ne fait plus de la science expérimentale, mais bien de la métaphysique, qu'il le veuille ou non. Un alchimiste, au contraire, est un métaphysicien qui vérifie expérimentalement ses déductions philosophiques. En notre qualité d'alchimiste, nous devons donc tout d'abord poser nos principes philosophiques.

I

Principes philosophiquesfondamentaux. l'aither
1° Il y a des etres et des rapports entre les êtres et ces êtres et ces rapports sont dans l'Etre. L'Etre est donc à la fois un et multiple. Cette proposition est facile à vérifier. Même en se plaçant au point de vue matérialiste ou des sciences physiques, il me serait facile de montrer qu'il y a d'abord des atomes séparés les uns des autres (les êtres) et que tous sont contenus dans ce qu'on appelle le vide, le rien. Or, ce vide, ce rien n'est pas le néant absolu, qui ne peut exister (existence et néant sont des termes contradictoires), mais si on appelle le quelque chose les atomes, le vide n'est rien de ce quelque chose, il est autre, mais il est, il est autre chose. Il est simple, homogène, continu, tandis que l'ensemble des atomes est multiple et discontinu. Ce prétendu vide, ce prétendu rien est donc l'Etre qui contient tous les êtres.
2° Pour que l'être et les êtres soient, il faut d'abord et avant tout qu'ils puissent être, qu'ils soient possibles. A l'origine intelligible de l'être, est donc le possible. L'Etre possible est l'ètre en puissance. La puissance n'est pas seulement la capacité d'etre, mais la tendance à être : tout être possible tend à se réaliser, toute virtualité à se manifester, toute spontanéité à se déployer. Le possibie de l'être est puissance d'être, tendance à être, aspira_ tion à l'être. Cette aspiration, cette tendance, cette puissance, est infinie : l'ètre possible embrase tout le possible de l'étre.
3. Un etre n'est pas produit, mais se produit dès qu'il lui est permis de se produire. Et, qu'on le remarque bien, si nul empéchement ne met obstacle à son essentielle aspiration à l'être, il réalisera d'abord etd'un seul coup,toutson possible: il sera par lui-même, absolument, éternellement, infiniment un être parfait ; et tel sera le premier etre. Si , au contraire, il est empêché, arrêté, limité, il n'est puissance de tout l'etre que plus ou moins éloigné, et par degrés ; il n'est puissan e
prochaine que d'un certain être; et tels sont tous les autres êtres.

Puisque le premier être existe parfait, les autres sont arrêtés par lui, ils ne peuvent être qu'à un certain degré, et de plus, ils ne peuvent se produire que s'ils sont excités par lui à se produire sous telle ou telle forme ou degré. Un être ne peut passer de la puissance à l'acte de tel ou tel degré que sill est comme suscité dans son être par l'être parfait.
4. Un être n'est réel et en acte qu'autant qu'il est manifeste, visible : visible à autrui, il est pour autrui ; visible à soi, il est pour soi. En soi, il n'est que puissance; pour etre réel, pour exister, il faut qu'il apparaisse ; s'il n'apparaît qu'à autrui, il n'a de réalité que relative à autrui : il n'en a pas en soi, n'étant en soi que puissance ; ni pour soi, ne se connaissant pas. Quand il se connaît, quand il s'apparaît ou se manifeste à lui-même, quand il prend conscience de soi, alors seulement il a une réalité vraie, absolue, alors il existe.

Inconscient, ou il n'existe pas, ou il existe pour qui le voit, relativement à
lui, subjectivement en lui, non autrement que s'il était rêvé, pure apparence, pur fantôme: il existe enfin, d'un véritable etre et pour soi-même, quand il est conscient. La conscience est l'existence même, l'actualisation de l'etre virtuel. Passer de la puissance à l'acte, c'est prendre conscience de soi.
5. Quand je dis prendre conssience de soi, je ne veux pas dire une conscience réfléchie, comme celle de l'homme, non, cette conscience peut n'etre qu'un simple sentiment de soi, ou de son action. Il suffit, pour exister dans la réalité de son etre, qu'un être se sente; mais encore faut-il qu'il se sente. La conscience enveloppe la spontanéité avec la volonté, et ces facultés, d'abord en puissance, ne se dégagent que selon les lois du développement de l'etre.

Le Moi se sent d'abord dans sa rencontre avec le non-moi, dont l'opposition le suscite, le détermine, l'actualise : c'est le premier degré de la conscience. La multitude des êtres à ce premier degré constitue ce qu'on nomme l'Aither.
6. L'aither se compose d'une multitude d'ètres simples ou monades au premier degré de la conscience, de la volonté et de l'intelligence. Chaque monade est susceptible d'un développement indéfini, elle est un germe pouvant se dé velopper indéfiniment. Et comme on appelle Vie en général le développement de tout ce qu'un être contient en puissance, on voit que chaque monade est vivante, est un être vivant.

Si avec les matérialistes et les savants modernes, on regarde l'aither comme la matière a l'état primordial, on peut dire qu'elle est composée d'éléments vivants. Mais comme ces éléments vivants sont aussi conscients, on voit que ce que l'on nomme la matière est aussi l'esprit. La vérité est que la matière et l'esprit sont les deux faces externes et internes de la monade. L'impénétrabilité et le mouvement dont on fait les attributs de la matière ne sont que l'expression extérieure de la conscience et de la volonté, attributs de l'esprit.

Résumé. - Dieu est d'abord le principe
de l'étre; ensuite le premier-né de l'être, le premier etre. Deux aspects de la divinité, et comme deux Dieux, qu'il ne faut pas confondre. L'un est le Dieu-nature des panthéistes, la Nature-naturante de Spinoza ; l'autre, le Dieu-Esprit, le Dieu conscient et vivant, le Père vers qui s'élève toute prière avec toute adoration. Le principe de l'étre est le possible de l'être, la puissance d'être de tout ce qui existe, la substance universelle, infinie, absolue, commune à tous les êtres, aux êtres du monde et à l'être de Dieu. Le pre-mier-né de l'être, le premier être, est la première réalisation de ce principe : non pas l'etre, mais un être, qui a ceci de commun avec le principe des êtres, que, suscitant leurs puissances contenues dans le principe, il les fait être, il est le Père. L'Etre se polarise en quelque sorte et se manifeste sous une double forme : un être parfait, des êtres à tous les degrés. Ceuxci ne sont pas contenus dans l'être parfait mais dans l'être en puissance qui est sa substance comme la leur.

Ainsi se trouvent conciliés le pan-
théisme et le théisme, le matérialisme et le spiritualisme. Tout ce qu'il y a de vrai dans chacun de ces systèmes est contenu dans celui que je viens de brièvement exposer.

II

Les coagulations de l'aither.
7. Voilà donc l'aither composé de monades vivantes, conscientes, volontaires, non liés entre elles, libres de leurs mouvements, de leurs directions. Or, le monde résulte de l'association, de l'agrégation de ces monades; comment cela a-t-il pu se faire?

Les materialistes et la plupart des savants nous répondront qu'immédiatement après leur naissance, les monades en mouvement s'entrechoquèrent, qu'il en résulta qu'en certains points plusieurs monades acquirent la même vitesse, qu'alors elles continuèrent à se mouvoir ensemble et agirent comme une masse simple, unique. Pour qu'une réunion de monades forment en effet une masse
simple, il suffit d'un synchronisme exact de leur mouvement, qui donne à toutes les monades une parfaite unité d'action, et une énergie proportionnelle à leur nombre. Il y a du vrai dans cette conception, mais elle n'est pas suffisante pour expliquer les agrégats de monades.

Il ne faut pas perdre de vue, en effet, que ces monades sont des êtres vivants et conscients et qu'immédiatement après leur nais: ance non seulement ces elements s'entrechoquèrentmaisqu'ils furent affectés dans leur sensibilité, qu'ils appliquèrent leur intelligence rudimentaire et leur volonté rudimentaire aussi à fuir les heurts désagréables, à rechercher les rencontres agréables, que dès lors ils n'ont forméquedes associations essentiellement instables. « J'appelle instable, dit Delbœuf, des éléments qui, s'ils n'ont pas de l'aversion, n'ont pas du moins les uns pour les autres aucune prédilection marquée, qui s'unissent et se désunissentsans effort, ou pour mieux dire, qui restent indépendants et ne s'unissent un instant que pour se désunir aussitôt après." Tel était l'état

- 13 -

primordial, et on voit qu'il ne pouvait s'y former aucun agrégat stable.

Mais pendant que les premieres monades suscitees de l'etre en puissance parle Père développent de cette manière leurs facultés, de nouvelles monades sont suscitées. Les anciennes seront au milieu d'elles des puissances d'un degré plus élevé, des forces plus développées, des conscients plus capables de se connaître et d'être chacune, capables aussi de se subordonner des, monades, des forces extérieures, qui seront comme des corps dont elles seront les àmes. Ainsi, c'est par subordination du plus faible par le plus fort, du moins conscient par le plus conscient que se sont formées les premières coagulations éthérées. Ce ne sont pas des corps élémentaires, des atomes qui sont ainsi formés, ce sont des êtres subtils que nous appelons des esprits et des esprits elémentaires ou primordiaux.

Chacun de ces esprits élémentaires est composé d'une monade centrale ou âme et de monades environnantes liées à elle, constituant son corps éthéré ou éthéroso-
me. Dans ces premières coagulations, noustrouvons des Corps. lois que nous retrou-+1.- ame. verons plus loin, savoir : le plus fort, Fig. 1.-Esprit elémentaire. celui qui a la plus grande force de volonté, cherche toujours à se soumettre les plus faibles. D'un autre côté: les plus faibles recherchent la protection des plus forts, et se soumettent à eux. Le fort commande, les faibles obéissent.
8. Ce quis'est passé parmi les monades, va se passer maintenant parmi les esprits élémentaires. Les plus anciens seront bientot plus perfectionnés, et par consé-

Corps éthéré
Fig. 2. - Esprit complexe de $\mathbf{2}^{2}$ ordre.
quent supérieurs aux nouveaux et d'après les lois ci-dessus il va se tormer des esprits

- 15 -

complexes, composés: 1° d'une ame dominante, 2° de plusieurs âmes inférieures et subordonnées constituant ce que j'ai appelé le psycholone ou corps spirituel, 3° du corps éthéré résultant de la fusion de tous les corps éthérés des âmes inférieures avec celui de la dominante.

Par le progrès du développement, il se formeradesesprits encore pluscomplexes. Un esprit comme le précédent, devenu supérieur, s'attachera des esprits inférieurs complexes et ainsi de suite jusqu'à une certaine limite que nous ne pouvons fixer.

Cette complexité dans la constitution des êtres spirituels se constate sur la terre dans la constitution des êtres organisés ou vivants. L'être monocellulaire correspond à un esprit comme celui de la figure2. Plusieurs cellules s'agrègent pour former une gastrula, être plus complexe, individu dusecond degréou de laseconde puissance. Les gastrulas, en s'agrégeant, formeront des organismes plus complexes encore, et ceux-ci, en s'ajoutant bout à bout, formeront les organismes les plus compli-
qués que nous ayons sur la terre, les organismes à la quatrième puissance. On comprend du reste qu'il en soit ainsi, si l'on réfléchit qu'un organisme n'est que l'expression corporelle d'un esprit plus ou moins complexe. La complexité de l'organisme est la manifestation corporelle et visible de la complexité de l'organisme spirituel qui y est incarné.
9. Mais les etres vivants corporels ne forment pas seulement des organismes, ils forment aussi des associations, des sociétés, ainsi font les fourmis, les abeilles par exemple. Les êtres spirituels se réunissent de même en sociéte. Des esprits de même degré de complexité se réunissent, s'associent pour former une société spirituelle. Des esprits élémentaires se réunissent, s'associent pour former une pareille société. Or, ce sont des sociétés d'esprits élémentaires qui constituent ce que l'on nomme les atomes chimiques.

$-17-$

III

Atomes chimiqurs et molécules

10. Je dis que l'atome chimique est une société plus ou moins nombreuse d'esprits élémentaires. Mais si l'atome n'était que cela, il serait une société d'esprits (fig. 3) appartenant au monde des esprits et ne serait pas un atome chimique appartenant au monde des corps. Il faut pour que la société forme un atome, deux conditions : ${ }^{1 \cdot}$ que tous ses membres soient égaux entre eux, du même dégré de développement; 2° qu'ils se serrent tellement les uns les autres qu'ils ne forment plus qu'un agrégat (fig. 4). Il faut donc que la société passe de l'état instable à l'etat stable et c'est ce dernier état qui constitue la corporeité, l'état d'Hylé. Aux âmes des esprits élémentaires constituant maintenant l'agrégat, nous donnerons désormais le nom d'ultimates.
11. Mais quelle est la cause qui a fait passer les esprits élémentaires, de simple société spirituelle, à l'état d'agrégat
d'Hylé, d'atome? Le monae des esprits constitue la majeure partie de l'univers. Il forme une sphère immense, dont le monde hylique est comme la croate, croute formée de l'épu-

Fig. 3. - Société d'esprits élémentaires.

Fig. 4. - Atome chimique. ration du monde spirituel, de ses résidus, de sa lie. En effet, à un moment donné du temps un épouvantable désordre s'est produitdansle mon. de des esprits, une tempête aitherée à nulle autre pareille éclata et une grande partie des anges fut chassée, refoulée à la surface de la sphère, entraînant avec elle les esprits inferieurs et par conséquent tous les esprits élémentaires. La force centrifuge qui les a chassés a été telle que la croate a été brisée en fragments et repoussée à une assez grande distance de la sphère spiri-

- 19 -

tuelle, comme si elle avait été soumise à une immense explosion.

Pour résister à cette force qui menaçait de les détruire, pour résister au froid du cénome, les esprits de toute catégorie serrèrent leurs rangs, se pressèrent les uns contre les autres et cela d'autant plus fort qu'ils étaient plus inférieurs, plus faibles. C'est ainsi que, selon nous, se sont formés les atomes chimiques, dont la naissance a eu lieu, comme on le voit, bien après la formation des coagulations aithérées, appelées esprits.

Les atomes chimiques ne proviennent pas de la condensation primitive des monades aithérées comme le veulent la plupart des savants, mais d'une condensation effectuee bien longtemps après les condensations primordiales de l'aither et d'une manière indirecte et comme accidentelle. La formation du monde hylique n'est, en effet, qu'un accident survenu dans l'immense durée du monde, et un jour il est destiné à disparaître.
12. Il y a un très grand nombre d'atomes chimiques différents, les chimistes
en comptent maintenant environ 70. Par quoi diffèrent-ils les uns des autres? Ils diffèrent par le nombre des ultimates (1). Plus ce nombre est grand, plus les ultimates sont serrés les uns des autres et plus le poids de l'atome est grand. La structure des divers atomes est donc différente, les mouvements des ultimates qui les composent sont différents et aussi les mouvements de l'aither qui les pénètre et les entoure immédiatement.
a Immédiatement après leur naissance, " dit le professeur Delbœuf, de Liège (2), n les éléments s'entrechoquèrent et, affec" tés dans leur sensibilité, ils appliquè" rent leur intelligence et leur liberté à ") fuir les heurts désagreables, à recher" cher les rencontres agréables; et ainsi " se créèrent les antipathies et les sym" pathies, les affinités et les répugnances, " les amours et les haines, aurait dit Em-
(1) Sir Norman Lockyer a donné des arguments de poids, basés sur des considérations spectroscopiques, et tout en faveur de la nature complexe de ces éléments soi-disant simples appelés atomes.
(2) La matière brute et la matière vivante, 1887.
" pédocle. Les éléments eurent des désirs \% et des craintes, appelèrent ou redoutev rent certaines unions; leur nature indi" viduelle se manifesta par des phéno") mènes propresde relation; ils acquirent " des habitudes qui devinrent ce que nous „ appelons leurs lois ; en un mot, ils ") apprirent à faire le sacrifice d'une partie ") de leur liberté pour jouir d'une paix \%) relative et se mettre à l'abri des contacts " hostiles ". Les lois dites chimiques, les propriétés chimiques des éléments sont donc les résidus d'actes primitivement libres, d'actes d'êtres doués de vie, car, ne l'oublions pas, tout est vivant, étant composé d'unités vivantes.
13. Avec Delbœuf, je dis, maintenant, que les propriétés des atomes ne ieur sont pas toutes inhérentes, ne leur appartiennent pas entièrement en propre, mais leur sont attachées en partie par le travail de la communauté. «Il nous plait de croire que l'oxygène de l'air est le mème que celui de l'eau, que celui de l'acide carbonique ou de la potasse, que celui dusang ; mais, à ne consulter que les faits, nous
serions conduits à l'affirmation directement opposée. Une simple question : Quand il est uni au pothssium, a-t-ilencore de l'affinité pour l'hydrogene? Personne n'oserait répondre oui. Pourtant notre éducation est ainsi faite, l'affinité pour l'hydrogene nous paraft être une des marques caractéristiquesde l'oxygene. En réalité, iln'en estrien:l'oxygene de la potasse n'a nulle envie de s'unir à l'hydrogène.
"Une propriété déterminee d'un corps ne se montre qu'à deux conditions, à savoir : qu'il soit placé dars un certain milieu, et qu'il soit mis dans un certain état. Ainsi, pour que l'oxygène manifeste son affinité pour l'hydrogene, il faut une première condition: il ne doit pas avoir à sa portée un corps pour lequel il ait plus d'affinité encore ; car, sinon, il sortira même une combinaison avec l'hydrogène pour s'unir a ce corps. C'est ce que lui fait faire le potassium.
" Il suit de là que l'affinité et la répulsion sont tout au moins autant des résultantes que des propriétés.
" Arretons-nous un instant sur cette
conséquence. Supposons qu'il existe quelque part un monde sans carbone. Les chimistes qui l'habitent y ont dressé la liste des corps simples, décrit leurs propriétés, leurs affinités et leurs répugnances, en vue d'expliquer toutes les réactions dont ils sont les témoins. Mais voilà que tout à coup, dans ce monde, le carbone fait son apparition. Quel bouleversement! Toutes ou presque toutes les combinaisons se défont; les corps qui s'affectionnaient le plus se repoussent, des unions séculaires se rompent et des unions se cimentent qu'auparavant on n'aurait jamais pu prévoir.
" Les répulsions manifestées dans ce monde fictif seraient donc, on peut l'avancer, le résultat de la présence du carbone.
" Or, si les répulsions sont un résultat, pourquoi n'en dirait-on pas autant des affinités ? on n'a qu'a faire la supposition inverse. Bien mieux : les phénomènes s'expliquent d'une manière plus rationnelle en partant des répulsions que des attractions. Il suffit de se représenter chaque corps spécifique comme tendant
à envahir l'espace, et à chasser tout ce qui s'oppose à son expansion. Venant se heurter à chaque instant à des tendances semblables de la part des autres substances, il finit par accepter un modus rivendi, une espèce d'accord, en vertu duquel il s'associe avec les humeurs les moins incompatibles. L'eau se décomposerait en présence du potassium, parce que l'oxygène, mis dans l'alternative de cohabiter avec un ennemi, choisit celui qui lui est le moins désagréable.
" Si cette manière de voir est plausible, les phénomènes d'attraction et de répulsion, les seuls qui frappent nos yeux et sur lesquels l'expérience a prise, ne caractériseraient pas les corps entre lesquels ils se manifestent, mais seraient une résultante genérale de la communauté universelle. Si, dans l'atmosphère de ce globe que nous habitons, venait à être injectée en grande quantité une substance avide d'azote, que de changements peut-être! Ne verrions-nous pas alors l'oxygène de l'air, cessant d'être tempéré, brûlant animaux, plantes et roches, et la
$-25-$
face entière de la terre changer promptement d'aspect?
» Passons à un second ordre de considérations. On vient de voir d'où pourrait provenir l'affinité de l'oxygène pour l'hydrogène, affinité qui croîtra ou diminuera suivant que l'on retranchera ou que l'on ajoutera certains corps dans le milieu de leur cohabitation.
) Il est, disons-nous, une seconde condition, tout aussi nécessaire que la première, pour que l'affinité se manifeste. Il faut que l'un et l'autre corps aient été mis dans un certain état. A la température ordinaire, l'oxygène peut rester indéfiniment en contact avec l'hydrogène sans s'unir à lui. C'est ainsi que dans l'atmosphère, il vit côte à côte avec l'azote. Cette indifférence persiste tant qu'il n'est pas porté à la chaleur rouge. Il est comme cette matière qui n'avait horreur du vide que jusqu'à trente-deux pieds. Qu'est-ce que cela signifie, sinon que la chaleur a donné ou soustrait à l'oxygène une certaine propriété? Or, si l'oxygène à moins de 500 degrés et l'oxygène à 500 degrés
ont des propriétés differentes, font-ils un seul et même corps?

* On dit habituellement oui, mais quine voit que l'on est tout aussi en droit de répondre non? Voici de l'oxygène et du mercure à la température ordinaire: ils ne s'attachent pas l'un à l'autre. Je chauffe le mercure, et il s'empare de l'oxygène : je chauffe davantage le composé résultant, et l'oxygène se dégage. Que conclure de là ? N'est-ce pas que, chauffé, le mercure gagne pour l'oxygène une amitié qu'il ne ressentait pas auparavant et que, surchauffé, il redevient pour lui un ennemi ou tout au moins un indifferent? Le mercure métallique ne se prend à aimer l'oxygène qu'entre 300 et 500 degrés. Entre ces limites peut-on dire qu'il est le même corps qu'en dehors de ces limites?
" Tout bien considéré (peut-on le méconnaitre ?) l'oxygène, tel qu'il est dans l'air atmosphérique, n'est pas le même que l'oxygène mis en contact avec le potassium, ou bien que l'oxygène mis en présence de l'hydrogène et du charbon. Ce sont la, on peut le dire, autant de corps
différents. On ne songerait même jamais à les qualifier autrement, si l'expérience ne venait nous convaincre qu'on peut les transformer les uns dans les autres sans perte ni addition de matière."

Si les propriétés observables des corps ne leur appartiennent pas entièrement en propre, mais leursont attachés en partie par le travail de la communauté, ainsi que le veut l'absolue solidarité qui relie entre elles toutes les existences, une conséquence importante en découle: C'est que la communauté renfermant des êtres intelligents et libres, les propriétés des atomes sont partiellement une création de ces êtres spirituels.
14. Les atomes chimiques s'associent entre eux pour former des molécules. Entre un atome et une molécule, il y a plusieurs différences, L'atome est formé d'un très grand nombre d'ultimates, la molécule n'est formée que d'un petit nombre d'atomes, en sorte que les molécules affectent des formes polyedriques, tandis que les atomes sont fort probablement sphériques. Les atomes sont, en outre, homo-
gènes, c'est-à-dire composés d'ultimates semblables, et c'est pour cette raison que les chimistes les appellent des corps simples, bien qu'ils soient composés. Les molécules, au contraire, sont hetérogènes, c'est-à-dire composées d'atomes différents, c'est pourquoi les chimistes les nomment des corps composes. Il est vrai que l'on peut concevoir une molécule formée d'atomes de même nature, molécule qui serait alors homogène. Quoi qu'il en soit, les alchimistes doivent nommer les corps simples des chimistes des corps homogènes et les corps composés des chimistes, des corps hetterogènes.

Cela posé, nous avons vu que les chimistes comptent aujourd'hui qu'il existe environ 70 corps simples ou homogènes. Est-ce bien vrai ? probablement non. Il est vrai qu'il y a certainement plusieurs espèces d'atomes chimiques, il est aussi fort probable que certains atomes considérés comme tels ne sont que des molé-. cules, c'est-à-dire des corps hétérogènes. Le Cyanogène a eté considéré quelque temps comme un corps simple ou homo-
gène et il en joue le rôle, puis on a reconnu que c'etait un corps hétérogène. Il en est de mème de l'ammonium qui est un véritable métal hétérogene. Il peut donc se faire que plusieurs des corps reputés homogènes ou simples par nos chimistes, ne soient que des corps composés ou hétérogenes.
15. Les moléculesà leur tour s'associent, se resserrent, se pressent les unes les autres pour former des corps d'abord gazeux, puis liquides, puis solides, et lorsque ces derniers se forment tranquillement ils prennent des formes polyédriques en rapport avec la forme des molécules constituantes, et c'est ce qu'on appelle des cristaux.

Quoi de plus inerte en apparence qu'un cristal? et cependant dans ce corps qui semble inerte, on peut encore, avec un peu d'attention, constater les manifestations de la vie.

Lorsqu'on lit, dit un auteur, ce que nous conte à leur sujet M. John W. Judd (communication faite en 1891 à la Royal institution de Londres), on se sent pris
d'un de ces troubles qui vous envahit en présenced'un monde nouvellementrévélé! Les cristaux vivent, grandissent, meurent et. . . ressuscitent ! Supérieurs à l'homme, ils rajeunissent après avoir passé l'age de sénilité.

Tout comme ces petits organismesqu'on nomme rhizopodes, ou des bourgeons ou des rameaux, brisé ou mutilé, un cristal répare ses pertes durant sa croissance. Un petit fragment de cristal grandit et reproduit un total analogue au morceau dont il a été détaché. Et cette force réparatrice, cette force vitale, si vous le préférez, est si intense, que le morceau mutilé croit plus vite que les morceaux restés intacts.

Il a presque le pouvoir de géneration, car sa forme normale peut-ètre complètement modifiée par la présence de traces infinitésimales de certaines substances étrangères. D'après une communication à l'Institut, de MM. Gernez, Parmentier et Amat (comptes-rendusdel'Institut, 1884), en refroidissant des dissolutions très concentrées d'hyposulfite de soude ordinaire
dansun mélange réfrigérant, en l'absence de tout germe de cristal ordinaire, il se produit des cristaux spéciaux : ce sont des aiguilles très fines, d'une longueur de plusieurs centimètres.... Mais il suffirait de toucher ces aiguilles fines avec une baguette de verre mise précédemment en simple contact avec les cristaux prismatiques pour provoquer la transformation de ces aiguilles en prismes gros et courts. Autrement dit, les cristaux introduits ont engermé les anciens et provoqué la naissance subite de formes nouvelles.

Le cristal peut s'arretter dans son évolution pendant un temps fort long, puis, réveillé de sa torpeur, continuer son cycle vital. Les cristaux vieillissent, comme nous-mêmes, et la vieillesse va jusqu'à affecter leur structure intime. Un moment arrive où ils perdent leurs propriétés optiques et physiques et passent dans la catégorie des cadavres, des pseudomorphes.

IV

Transformation des atomes chimiques ; Évolution des atomes.
16. Les êtres étant composés d'éléments qui se développent, évoluent, sont soumis à l'évolution, à la transformation. Les êtres d'aujourd'hui ne sont pas absolument identiques à ce qu'ils étaient il y a plusieurs années et ils ne peuvent revenir aux états du passé. Tout phénomène, si passager qu'on le suppose, laisse donc après lui de l'irrévocable. L'ètre, en se transformant, perd une partie de sa transformabilité disponible. Qui pourra rendre son éclat au diamant brulé et transformé en graphite? son intégrité au silex brisé? qui refera du blanc d'œuf frais avec de l'albumine coagulée?
Voici, par exemple, une goutte d'eau renfermée dans un tube de verre, on la congele, on la refond. La goutte d'eau, dira-t-on, est resté la même: pour mille usages, ses propriés n'ont pas subi d'altération, elle peut de nouveau dissou-
dre les substances solubles, donner de la vapeur, se décomposer en oxygène et hydrogène. Mais considérée dans sa structure, il n'en est plus ainsi. Certes, les molécules n'ont pas matériellement changé, mais elles seront probablement disposées dans un autre ordre, qui résumera l'histoire de ses métamorphose. Il est impossible de reformer la première goute d'eau de manière à la rendre indiscernable. En supposant même qu'on parvienne à redisposer les molécules comme elles étaient auparavant, le travail consommé par cette opération laissera des traces indélébiles dans la matiè̀e ambiante, qui, à son tour, réagira nécessairement de proche en proche sur la goutte d'eau en affectant sa constitution intime. Or, un seul battement de l'aile d'un cousin ébranle l'univers à tout jamais; à plus forte raison l'entrée en activité des causes qui ont gelé la goutte et qui l'ont liquéfiée.

Aucun des atomes actuellement connus par les chimistes n'est identique à cequ'ils etaient il y a mille ans, il y a plusieurs millions d'années, ils se sont transformés

- 34 -

etse transformeront encore(1). Qu'est-ce à dire, sinon que la matière actuelle a perdu certaines propriétés qu'elle possédait jadis pour en prendre d'autres, en un mot elle a évolué, c'est-à-dire qu'elle a développé et mis à jour ce qui était en elle à l'état de possible et d'enveloppement. Les éléments matériels n'ont donc pas de propriétés immuables.

Les diverses espèces d'atomes chimiques ressemblent en cela aux espèces végétales ou animales. Les partisans de la fixité ont opposé aux transformistes que les races artificielles retournent a la forme primitive lorsqu'elles sont abandonnées à l'état sauvage. Cela n'est pas exact. Il est vrai qu'elles prennent la ressemblance de l'espèce primitive, mais
(1) La possibilité de cette transformation est rendue plus certaine depuis les observations de Becquerel sur l^{\prime} Uranium et de M. et \mathbf{M}^{\bullet} Curiesur le radium. J.J.Thomson a déduit de ces observations que les métaux sont sans cesse en état de dissociation moléculaire spontanée et de recom. position partielle. Par ses calculs, il est arrivé à ce résultat que chaque molécule de bismuth subit la dissociation environ 40 millions de fois par seconde en moyenne. La dissociation des molécules dans les métaux plus conducteurs, serait plus rapide encore.
elles en diffèrent néanmoins, en sorte qu'il y a transformation irrévocable.
17. Quelle est, maintenant, la tendance de l'évolution des atomes? est-elle la même que celle de l'évolution des etres spirituels et des sociétés formées par ces êtres? Si l'on se rapporte à ce que j'ai dit au $\mathrm{n}^{\circ} 8$, on verra que l'évolution des êtres spirituels est la même que celle des corps organisés ou vivants. Or, quelle est la loi de l'évolution des organismes et des sociétés humaines? un ordre de plus en plus parfait, une différenciation des parties poussées toujours plus loin, et une unité de plus en plus complète de l'ensemble, une parfaite harmonie, une parfaite stabilité ou quiétude. La loi d'évolution des atomes est toute semblable, quoique beaucoup plus simple; les atomes aspirent à des formes de plus en plus stables, de plus en plus inaltérables. Les atomes les plus stables, les moins altérables, voilà les atomes les plus parfaits. Et comme les corps sous une forme compacte sont plus denses, il en résulte que les formes les plus stables sont aussi les plus
denses. Les atomes les plus parfaits seront donc les atomes les plus compacts, ceux dont la masse (la quantité d'ultimates) est la plus grande, dont le poids est le plus fort. Mais alors les atomes les plus parfaits semblent les corps les plus amortis et paralysés, les corps les plus differents des matières vivantes, c'est pourquoi on les appelle des corps bruis, des corps morts et non vivants. L'univers hylique est dit l'univers inanimé. Quelle erreur !
18. Jusqu'ici, nous avons admis qu'un atome chimique est composé essentiellement d'un nombre plus ou moins grand d'ultimates compacts, dont la masse est pénétrée et environnée d'une couche d'ether plus ou moins condensée. Cette structure de l'atome nous a été fournie par déduction, comme une conséquence des principes posés. Je vais faire ici une hypothèse dont on comprendra l'importance un peu plus loin.

Je suppose qu'autour de chaque atome s'attache volontairement une société plus ou moins nombreuse d'esprits elémen-
taires. Cette société n'est point compacte, elle ne fait point partie de l'atome d'une manière indispensable, elle est libre d'y rester attachée ou de le quitter pour vivre d'une vie indépendante ou pour aller s'attacher à un autre atome. C'est un accessoire de l'atome, c'est comme une multitude de parasites attachés à un animal, c'est comme une escorte de l'atome qui serait composée d'ultimates dissidents, c'est comme l'atmosphère gazeuse dont les mo écules sont attachées à la surface ou dans les pores d'un corps solide. Ces ultimates libres autour des atomes vont jouer un grand rôledans la transmutation.
19. Les chimistes ont reconnu que les atomes ou les corps homogènes forment deux séries: celle des métalloides et celle des metaux. Mais il est évident qu'il existe une troisième série, car parmi les deux séries des chimistes on trouve des corps qui sont à la fois métalloïdes et métaux. Le type du métalloïde était, pour les anciens, le Soufre. Aujourd'hui nous choisirions l'Oxygène, de même le type des métaux était, pour les anciens, le

Mercure. Pour diverses raisons nous lui préfèrerions de nos jours l'hydrogène, véritable métal gazeux, comme l'oxygène est un métalloïde gazeux. Enfin le type de la troisième série est l'arsenic, ou, si l'on veut choisir le type parmi les gaz, l'Azote.

Oxygène	Hydrogène Soufre	Azote
Mercure	Arsenic	

Voilà les principaux types des trois séries d'atomes chimiques.

On convient en général que le mot metalloide est fort mal choisi, car il signifie : ce qui a la forme d'un métal, et les vrais métalloïdes tels que le soufre, le phosphore, le diamant ne ressemblent pas du tout aux métaux. Il faut donc se servir d'une autre expression. Pour notre part nous désignerons, selon la tradition alchimique, les trois séries par les mots soufre, mercure et arsenic suivis d'une epithète dont nous allons justitier l'usage.

En prenant toutes les propriétés quiconviennentà tousles métalloïdes, c'est-à-dire à tous les soufres, nous pouvons les attribuer à un corps idéal, abstrait, logique

- 39 -

ou philosophique qui sera le vrai type des métalloïdes ou des soufres, nous l'appellerons donc le Soufre philosophique. En réunissant de même toutes les propriétés générales des métaux sur un corps abstrait, idéal, nous aurons le Mercure philosophique. Enfin en agissant de meme pour la troisisième série, nous aurons. l'Arsenic philosophique.
Nous pourrons maintenant considérer les corps de la première série, comme formés de soufre philosophique, plus de quelque chose qui les distingue les uns des autres: les corps de la deuxième série, comme forınés de mercure philosophique, plus de quelque chose; les corps de la troisième, d'arsenic philosophique, plus de quelque chose.
Quelles sont les propriétés du Soufre philosophique? C'est un corps mauvais conducteur de la chaleur et de l'electricité; lorsqu'il est à l'état solide il al'aspect vitreux et une couleur jaune rougeatre. Et les propriétés du mercure philosophique? c'est un corps bon conducteur de la chaleur et de l'électricité ; lorsqu'il est à
l'état liquide ou à l'etat solide il est blanc et présente un éclat particulier qu'on nomme éclat métallique. Et enfin l'arsenic philosophique? c'est un corps mixte, il est à la fois soufre et mercure sans être ni l'un, ni l'autre. Ces diverses propriétés montrent que dans les trois sortes d'atomes, les ultimates ne sont pas disposés de la même manière et que les vibrations de l'ether ne s'y produisent pas non plus de la même façon. Mais ces trois corps n'ont-ils pas encore d'autres caractères?
Oui, les atomesde mercure sont dépourvus ou presque entièrement dépourvus d'ultimates accessoires (voyez $\mathrm{n}^{\circ} 18$) ; les atomes de soufre en sont pourvus abondamment et les atomes d'arsenic plus abondamment encore.
20. Nous avons vu que les atomes chimiques ou les corps homogènes qu'ils forment, changent sans cesse, se transforment toujours avec le temps; nous avons vu que leurs propriétés non seulement ne sont pas immuables, mais sont tout à fait relatives, car elles varient avec le milieu chimique ou physique.

Lorsque ces changements, ces transformations ont acquis une caractéristique bien tranchée, les chimistes disent que le corps se présente sous un nouvel état allotropique. Or, les caractères d'un état allotropique d'un corps peuvent être tels, que sous cet état on ne rconnait plus le corps primitif auquel on le rattachait, une nouvelle espèce de corps a été formée.

La transformation des espèces d'atomes chimiques ou des espèces de corps simples se présente ainsi sous le même aspect que la transformation des espèces vivantes. Les états allotropiques sont les analogues des races, et quand une race est tellement différente de l'espèce primitive à laquelle on la rattachait, on peut dire qu'on a sous les yeux une nouvelle espèce.

Comment s'y prennent les naturalistes, pour montrer que toutes les espèces vivantes dérivent par transformation d'un type ou d'un petit nombre de types primitifs? En faisant un tableau du règne végétal ou du règne animal dans lequel les espèces sont rangées à la suite ou à côté les unes des autres suivant leurs ressem-
blances et leur degré d'organisation, de telle sorte que ce tableau fait voir que les espèces passent insensiblement des unes aux autres. Ce tableau prend la forme d'un arbre qui estl'arbre généalogique du règne animal.
Dans certaines branches, les espèces qui se succèdent different à peine les unes des autres; dans d'autres branches, il y a plus de différences entre elles; dans d'autres encore, il y a des lacunes, mais chaque jour la découverte d'une nouvelle espèce fossile comble quelque lacune.

Or, tout ce que nous venons de dire du règne animal s'applique aux corps homogènes, aux atomes chimiques. Je ne tracerai pas ici l'arbre généalogique des atomes chimiques, je réserve ce travail pour plus tard. Qu'il me suffise de dire que déjà dans la classification de Mandeleef les atomes sont placés par séries, qu'il y a parfois passage insensible des uns aux autres et que d'autres fois il y a des lacunes. Mais que certaines de ceslacunes ont été comblées par la découverte d'un nouveau corps homogène, car de même
que tous les jours on découvre quelque nouvelle espèce fossile, de mème on découvre quelque nouvel atome. Citons parmi les plus récentes découvertes celles du Victorium, du Coronium. de l'Aurorium, du Nébulium (Ces deux derniers corps ont une densité plus faible que celle de l'hydrogène), du Polinium, du Radium et de l'Actinium.
21. Ainsi il nous parait certain que les différentes espèces d'atomes chimiques dérivent d'un type primitif ou d'un très petit nombre de types primitifs, deux ou trois. Mais comment la transformation a-t-elle pu se faire? je veux dire quel est le processus intime de la transformation?
Lorsque plusieurs corps homogènes mis en présenne réagissent chimiquement les uns sur les autres, la vie, la force vitale des atomes est momentanément exaltée. Or, je pense qu'en ce moment (état naissant) l'atome peut s'emparer pour se les agréger des ultimates accessoires qui lui sont simplement attachés ou des ultimates accessoires des autres atomes qui viennent comme voltiger autour de
lui. Un atome métallique, par exemple, exalté par les chocs et la présence autour de lui d'atomes d'oxygène ou d'azote, pourra s'emparer des ultimates accessoires qui accompagnent les atomes d'oxygène et d'ezote et se les incorporer, se les agréger. Et il doit etre d'autant plus avide de s'en emparer que naturellement autour de lui il n'y en a pas ou presque pas ($\mathrm{n}^{\circ} 19$). On comprend ainsi que peu à peu un atome puisse changer la masse de ses ultimates.

Tant que les ultimates ajoutees sont en petit nombre, l'atome ne parait pas avoir changé de propriétés. Mais à mesure qu'il en ajoute d'autres, ses propriétés se modifient et il arrive un moment où, s'enétantajouté un très grand nombre, il n'est plus le même atome, il est un autre. En augmentant sa masse d'ultimates, il est devenu plus compact et il pèse davantage.

Pour se transformer en une espèce nouvelle, l'atome n'a donc pas besoin de se combiner avec un adtre, il lui suffit qu'à un certain moment cet autre s'approche de lui et l'exaspère, l'exalte. Le second
sera donc la cause de la transformation du premier par sa seule présence.

V

La Pratique de la Transmutation.
22. Si la transformation des atomes a lieu d'elle-même dans la nature, pourquoi l'homme ne pourrait-il pas la produire? Je dis qu'il peut produire cette transformation et même plus rapidement que la nature, car tandis que la transfor - ation des espèces vivantes de la nature a lieu avec une extrême lenteur, celle opérée par l'homme sur les races est beaucoup plus rapide. Or, par quel procédé l'homme transforme-t-il les races d'animaux domestiques? par le même procédé qu'emploie la nature. Seulement, tandis que dans la nature les espèces sont rarement ou lentement mises dans les conditions favorables pour varier beaucoup, l'homme les met tous les jours età volonté dans ces conditions. L'Alchimiste agit de même à l'égard des atomes.

D'après ce que nous venons de dire
dans les paragraphes qui précèdent, on voit que la condition essentielle de la transformation, c'est la mise en présence des atomes qu'on veut transforner, d'autres atomes pourvus abondamment d'ultimates accessoires. Si donc l'on veut transformer certains atomes métalliques ou mercuriels en d'autres atomes métalliques, il faut mettre en présence des premiers atomes métalliques, des atomes de soufre philosophique ou mieux d'arsenic philosophique.

Il faut de plus que ces atomes soient mis dans le plus grand état d'exaltation possible. Or, voici un moyen d'obtenir cet état : on met en présence du métal, des composés facilement décomposables de telle sorte que les atomes d'arsenic philosophique (d'azote par exempie) au moment où ils sont à l'etat naissant choquent les atomes métalliques.
Voilà pour la condition essentielle.
Mais d'autres conditions utiles peuvent être en même temps réalisées. On peut, par exemple, pour agir sur des corps solides, les réduire en poudre et les com-
primer. W. Spring ayant soumis des corps en poussière à des pressions énormes, leur a fait prendre des états allotropiques. Or, il ressort de ces essais que tous les corps prennent sous pression la forme qui correspond toujours au maximum de densité. Ainsi l'arsenic amorphe devient toujours de l'arsenic métallique; le soufre amorphe plastique ou prismatique passe toujours à l'état octaedrique. Si l'on comprime des mélanges de corps différents, la combinaison se fait toujours, quand elle doit avoir une densité plus grande que celle du mélange ; elle ne se fait jamais dans le cas :ontraire.

La mise, en présence du métal qu'on veut transformer, d'une petite quantité de métal dans lequel on veut le transformer, peut aussi être des plus utiles. Il se passe alors une action analogue à celle de l'ensemencement d'une solution d'hyposulfite de soude par des petits cristaux prismatiques ($\mathrm{n}^{\circ} 15$).
23. J'aurais encore bien des conclusions à tirer de la théorie que je viens d'exposer dans ces quelques pages. Je ne le fais

- 48 -

pas, laissant ce soin au lecteur intelligent.
En terminant, je demande au directeur de l'Hyperchimie de convier tous les alchimistes qui ont dans la tête une théorie, de l'exposer ici aprèsla mienne. On pourra choisir ensuite la meilleure ou prendre dans chacune d'elles ce qui semblera meilleur. Il ne s'agit pas bien entendu de faire une simple critique de ma théorie, car tout est critiquable quand on veut, même les meilleures choses; mais il s'agit de la remplacer par une autre qui soit 1° complète, c'est-à-dire qui embrasse toute la question de l'hylozoïsme et de la transmutation, et 2° qui s'accorde aussi avec l'explication totale de l'univers.

J'ai ouvert le fetr-; que de plus savants que moi continuent, je.leur cède la parole.

Lhlit. - Imp. LE bIGUT frères

