A
 HOME FOR ALL
 OR

THE GRAVEL WALL

AND

(Octagor gittoxe of ghilding

NEW, CHEAP, CONVENIENT, SUPERIOR
and
ADAPTED TO RIOH AND POOR.

BYO. S. FOWLER,

> "tMERE'E NO YLAGE LTCE HOME, *

NEW YORK:

FOWLERS \& WELLA, PUBLTSLIERS, Cuinton IMali, 13I Nabnat Strieyt.

-3

3. $i+2$
\because

preface.

ENYIRON
Destey
LlBiARY

To cheapen and mprove human homen, and eqpecially to bring couffortable dwellings within the reach of the poorer classes, is the oljoct of thit volume-an object of the highest practical utility to man. It delineates a new mode of jnclosing pulbia edifices'and private residencers, far letter, every way, nod several hundred per cent. chenper, than ang other; and will cuable the poor but ingenious man to crect a enmfortabledweling at atrilling cost, and almost without the nid or cost, an nuw, of mechunics. Excert in a sagle particular, and this he has greatly improve!, this mole is the invention of ity author, and occurred thes. Till past fortr, his fro-. fession cherowed too much of his time and means to allow him to procure a eromfurtuble home; yet for ten years lie lias bern making oluervations, in nll his protewainal peregrinations, and cergitating by mentlu, upen the beest menle of fuilling the home of his fiture years. These have at length brought him to resulte, now relued to practice. Let no one suppose that he has forsaken, or even turned aside from, Phrenclogy-that first and only occupation of his enthusiastic youth, and the idol of his matured and declining years. He has turned asite unly to build him a gool home, and in doing so. has made und lenrned ituprovements to alopt which will greatly increase hame cemfiorts; and this work is aritten tu prophgate them, rather than ns a eomplete architectural prolurtion. As its nuthor is a phirenolngist, not a builder. it may lack oceasional let:ila and सpecificutiona, yet will given every thing pectiliar to this monle of buildiag. Specifications respecting deors, florrs. aindows, etc., comum to this and other moden of building, enu he learned from scientifio works on this suliject.

The netation rom nid the ciravel wati, are its two diatinct characteristics. The form, as applicd to dumestic reaidenoes, ia wholzy oria-

1Nat, with the author, nud the latter greatly improved upon, and at the other princifles and suggestions the nuthor has arrived while phaning and stu'ying out his own house. The wurk is offered, not ns begond improvement, for "prugress is a universal law," but to apply this law of progress to honse-building. Why so little progress in arclitecture, when there is so much in nll other matters? Why continuo to build in tho samo rquare form of all past nges? Is no radical improvement of both the external form and internal arrangement of private resilences, as well as building material, possible? Let this work answer

C0NTENTS.

SECTION I.

Abstract

PRINCIPLEG, PACTE, AND COMMON-GENBE BOGGESTIONS ABOUT HOUSE-BUILDING. 1. Man's Roquidition for a Home. 2. Men'y Habltations correspond with thetr Characterbleces. 2. The Pleasures of Bulldigg. \& What constlutes a Perfoct Home....... Page 7

SECTION II.

THE GRAVEL.WALL PLAN.

6. Nature' Builling Material. 6. Wooll is oljectionable. T. Brick. 8. The Lime, Gravel, and stone Wails. ©. Eelection of the Material. 10. Lime, its Propertion and Mewle of Mixing. 11. Placing and Warking the Nortar-bet. 12. Relatire Cont of the Gravelwall. 18. Foundations. 14. Monte of placing the Bnards for Boxes. 15. Sentolning. 10. Width of Walls and their Solidity. 17. Dnor and Window Framea, 18. The Top of this Wall. 19. Temporary Fiours. 20. Anchorage. 21. Chimners, Ventilation, Eprak-ing-tulxa, elc. 29. Outside and Insidn Finish. 23. Clay and Slono Wall. 24. Conl of the Oravel-wall. 25 Qaality of this Gravel-wall. 84. Vermin excladed trom Gravelwalls

SECTION III.

DEFECTS IN THE USUAL BHAPES OF HOUBES.

9t. High and low Honace. 28. Lurge and emall limage. 29. Number of Koome dealrable. 8n. Large and amall Barns and Outhours. 81. Long and darrow Ilouses. 82. The Winged Style doubly objectionable. 88. Tia Collage or Doric 8tyle. 8 Additions stuck on.

SECTIONIV.

GUPERIOLITY OF TIE OCTAGON FORM.

Abstract

85. Ita pontaing onefith more romm foy ite Wall. 30. Comparative Bonuly of the Doric, A.ntinn-Nnworin Sperithatims. 42. Description of the Auther's Lecsidence. 43. Tho thona and Alvier-Mature your I'lan wril-(iet all lieady-Employ good WorkmenGranecrato it by Δ ffection.

Page 88

SECTION V.

OTIIER PLANS fOR PARTITIONING AN OCTAGOR HOURE, BARNE, DOARD
WALLE, ETC.

Abstract

62. A Superior Plan. 63. Cellar Btriry. 64. Stairm 68, Epper Story. Be. Bamen by. Houses

EXPLANATION.

Enall miscd hemees, called Euperints, are empinged foe reforence from one's another of throse numbered beadings or paragrajis found throughout tho work.

g. \%one for $2 l l$.

SECTION I.

PRINCIPLES, FACTS, AND COMMON-SENSE BOGGESTIONG about lousedhullding.

1. man's hequisition for a home.

Every living thing must have its mabitation. "Foxes have holes," and all burrowing animals and reptiles excavate domiciles in which to shelter themedres from the meveless blast and piereing cold, to which to flee from danger, and in which to rear their joung. Ants, burs, beetles, crickets, and even worms, dig themselver holes in which to live and breed, while the more ingenions lere liuild ita hexagenal cells in which to multiply, and store its winter "supplies." Brars and wolves have their homes in hol. low trees and deep caverns, and even fish weave domiciles out of water grasses, or deposit their spawn in erevices among the pehbles, which thereloy become habitations for therir young. Fowls, having larger constructiveness, fiame their domiciles with twig-timbers, mason them with mud-mortar, and enshion them with hair and feather mattresses, and there live together in blissful love, while they produce and rear the offspring of their happy union. Not merely all animals, but also every tree and shrub appropriates to itself land for a homo in sume cleft of the moumtsin crag, or on the rich banks of some stream, there to send forth their roots, and build up their cylindrical walls and leafy roof.

Even every secd, every kernel of grain, has its own chamber and led in its paternal homestead, every ear of corn its stalkhouse and husk-walls, and each fruit and nut its stem-ahode, till it ean go forth in search of a permanent resting place. The very hills have their etemal residences, and waters their ever-oceupied abiding-phaces, while earth, and every sister planet, and celestial splere, each traverses his own pathway, unmolested by foreign foot. Thus, every living thing, aye, every herb, stone, and thing in mature, grain of sami included, have their own homes, and in turn become abodes for life, enjoyment, and development.

Nor is man an exception to this great home law. On the contrary, is he not its most perfect exemplification? Endowed with the primitive taculty called "inhatitiveness," ereated for the express purjese of compraneg him to provide an abiding-place, which shall be the instrumentality and focus of most of life's swedest phantres; he can mo more help craving home than food or friems, and absolutcly mest mave some nhining-phace as much as berath or strep. Nor should ary quench this home luxiry, and even meessity, hat let all provile for themselves temporary or permment residences, as much as with food or clothes-only cloth housed. As we appropinte considerable time to procuring food or paying board, so should all set apart as much time to proming and improving our lomes, and "furnishing" them with intramentaities of comfirt and luxury.

Eveciahy ought every anman pair to scoure a permanent romibuce for themselves and chaldren; for, without it, one powerful mental faculty mut suffir ferpetual ahrasion, and many nocre, dininished and interrupted antion and pleasure. This "mosurg" is rumoms wanly, alike destructive of property and peasure, eripphs hushandry, prevents plating trees and vines, amb obliges tenams to freegnent the grocery, with money in hand, for a therasad little thines which, if landowners, they would raise. None can duly appreciate home, till, having once owned and lost one, after being cast upon stone-lararted landlords, they reponsess thenselves of a comfortable domicile, again to feast upon the prowhets of their own garkens and athards. Father, mother, whoever, wherever thou art, heed this important adviceprovide a nome first-whatever else you do, or leavo undone,
and however stringent your poverty, even as your best means of escaping it.

Nor should any be content with a poor home only till they can better it, but provide the best thcy car. Time and money are wisely spent, which add to the real solid pleasures of home and family. All of us shamefully neglect this essential point. We carelessly tolerate evils and miseries by the score for days nud years, which a few hours or dollars would remove. We fail to give our domiciles their due proportion of our time and funds. Those who are content to live in old rookeries, while possessing the means to build mansions, or perhaps erecting "houses to let," have sordid souls, and rob themselves and families of most of life's joys, while those who build hetter barns for their stock than houses for their children, aro both unwise and inhuman. Reader, look around your own reşidence. Find you no evil, inconvenicuce, or nuisance-a smoky chimucy, a poor oven or cellar, perhaps even a rathole-which a few dollars, cents, or hours would suffice to obviate, and thus remove a perpetual vexation, which now sours naturally sweet tempers, and makes every thing in the honse and out of it go cross-grained? Or perceive yon io improvement, which would eest but little, yet he a source of perpetual phanure fir lifel a neighior remarked, "I put up a dumb waiter for $\geq: 30$-it need urit have cost $\leqslant 10$, if built with the homse-w hich saves so many steps, and is so handy, that we would not do without it for $\$ 100$ per year." And it will comtinue, for generations, many times a day, to save weary steps, expedite work, and hless every member of that family. In what other way could he have created as much plasure, or avoided as much unhappiness, with that moncy? Apply this principle, mot merely to a good house, contranted with a poor one, but to every little improvement you have added, or could add, to your home, and then consider whether a given sum spent in endowing home with little conveniences or instrumentalities of confort or laxury, could le invested so as to yield as grent an income, perhaps feremial stream, of pleasure. Ask yourself, "Can I get more enjoyment out of timo and moncy spent in providing a good house, rather than a poor ono, or making this or that improvement, than by some other appropriation of them?" and let the answer

10

 PIRNCIPLFS OF IOCSE-DULLDING.guage your home expenditures. Improving home facilitates, aids every other end and pleasure of life, while scanting it scants all.

It matters less what a house costs, than how oood it is. Better disburse moncy in improving home, than on thousands of things on which we too often well-nigh throw it away. Let others spend theirs on balls, rides, fashions, cte., but let me expend mine on lome, in amually adoming and improving it, till in life's deeline, I shall have crected for myself am! family a rempect nome; surromded by as many means of comiort and even luxury as possible, my land rich, twees yearly loaded with every variety of the choicest fruits, and provided with every thing conducive to beauty, utility, and comfort. In short, let all provide just as good homes as they can, ard better tham most think themselves able to do, cren at the sacrifiee of many other things. Not that in buiding you hhomid endancer bambuphey, or spond beyond your means; but that you had hetter curtail oher expmes to spend on home fixtures. To some, dhapmess is an important matter. Let such eut their gamment areordine to their cloth, yet get the largest garment possible out of what eloth cam he had. Yet on few things can and do men literally sequmer money as foolishty as in bailding. To begin with a cerule phan, and then alter this and patch up that, is foelish extravagance. Get all hfany beforo laying the first stome. Eipectally, mature your plan. Know juit what jou want, and how to do it, and keep all your wits sharpenced up. hiform jourself on this subject, so as to trust more to yomrelf and less to the methinies, who may take moro interest in your monry than house; and exense this omission or hat crror, hy, "l did not know how you wated it." Bo your own hoss, and throw yourelf more on your own julgment, and less on that of mechanies, which is sometimes inferior to that

- of common mon, becane not warjeel liy wrong training.

2. men's babithtions corbespond with their cuaracteristice.

The domidiles of all animals bear a elose resemblance to their respective characters. Thus, infirior animals, moths, worms, reptiles, ete, make very poor homes, while the coarse-grained woodchuck, and other burrowing amimals, are content with dark, damp, ground-holes Beavers, higher in the creative scale, build them.
selves nicer and better residences, while beasts of prey seek some ${ }^{1}$ dark cavern, from which to sally forth in search of hapless prey, and in which to deposit their booty. Walking fowls build on the ground, swimming ones in marshes, and flying ones in trees; while eagles select the towering erag, hawks and owls some deep wood, and innocent and tame birds, the tree by our door or window. Beautiful birds build tasty nests, the coarse-grained ${ }^{\prime}$ goose a conrse nest, and thus, throughout all nature, the anodes of all animals correspond perfectly with their characteristics, so that the latter can safuly be predicated from the former.

This law applies equally to man. The Bosjowan builds a rude hut, yet of the lowest type of human architecture, because at the bottom of the ladder. The ruins of Pompeii contain only two houses, and these of rulers, above one story high-humanity then being liftle developed-while the Mottentot, Carib, Malay, Indian, and Caucasian, build structures better, and better still, corresponling with the order of their mentality. In villages, ton, fine, fancy, old-fashioned, elegant, or ord houses, signify fine, fincy, oli-fithined, or elerant people.

Individuals, too, little refinerl, will build some outlandish tenement, as unsighty in looks as inconvenient in arrangement, but the we chdowed with good taste will ereet a neat, well-proportioned. and heautiful edifiee. The slack, low-minded, and "shifters," apire only to some hut or hovel, dug out of a bank, just to ward oll the major part of storm and cold, placed in a muldy hollow, only a half story high, and supplying few of life's necessities even, much less luxuries; while the spirited, ambitious, and enterprising, whose aspirations are lofty, and minds high-toned, select eminneres, and build high houses. Especially will the quantity and quality of man's intellact evince themselves in the houses they build. Those who let the mechanic play with their pmese, hy first playing on their fancy, and persuading them to build afier this or that gaudy or antiquated fashion, lack independence and juigment, while those of immature tastes will attempt some try-to-be-extra-exquisite momument of gewgaw crudeness, but those "f well-balanced minds and sound practical sense, will plan and execute a comfortable, good-looking, well-arranged residence, which they will finish off in a style corresponding with their own ordor
of taste. Indeed, other thiurs being equal, the better a man's mentality, the better mansion will he construct, and the characteristies of the house will be as those of its builder or occupant.

Of course this general rule has many modilications and exeeptions, both ways. Men pussessing nental superiority may oceupy inferior temements, from necessity, hahit, aversion to change the abote of earlier years, or even sheer inattention, while infe rior ones may own their fine honses more to their architect or fortuitous circumstances than themselves. So want of means, or a thonsad other causes, nay prevent given persons from carrying out their buildiug taste's or talents; yet, as a general rule, a fancy man will build a fancy entage; a practical man, a convenient home; a substantial man, a solid colifiee; a weak man, an illyarauged house; an aspiring man, a high house; and a superior man, a superb villa. Yet this diversity of taste is well, fur it variwgates and beantifics both tewn and comery, is compatible with ruluh taste and the highest utility, and promotes both; and will inderinitely perfect the habitations of man throughout all coming time.

3. tie puengures of bullding.

Nor is man constituted merely to require houses, but also ndapmal to hild them, by buing endowed with a buiding facenv. Not merely dees nature double and quabruple ment of dife's pleasures liy means of honses; but she has made their erection absolutely certain, by rembering the very building it eelf nost phensurable. Buhold how happy yon hirds, in gatherint materiak, and huilding up day by day, a swet little home for themsches and their prospective ofrpring; and say, ye who have ever built a resiblence for your own solf and family, if its phaniur, its preparation, and its erection, from its very cornerstome, were nut all pheasurahle, so as literally to form an epoch in your history, and to oventifance even its expensiveness. And if it were combucted in the best maner, it might all be pleasurable. Buildine too hastily, or at great disadmantage, or unwisely is more or less irksome, as is the mothohedience of all mature' other laws; but to see this room finished to-day, and that to morrow; this excellent tixture begim, and that added, is exult
ingly pleasurable. No labor of my life has given me more lively delight than the planning and building of my own house; and to all it can likewise be rendered almost intoxicating.

Notwithstanding its expensiveness, men have a literal mania for building, which increases with civilization, and should continue till all are supplied with confortable homes. Houses being so absolutely necessary, ${ }^{1}$ nature has made their crection absolutely certain, by rendering it thas pleasurable. This plensure is consequent on its gratifying those two primitive faculties, Inhabitiveness and Constructiveness, along with several others; without the former of which he would never wish to build if he could; and without the latter, could not if he would. How perfect this home-crecting arrangement of nature! Then let it bo cultivated by all.

These two faculties make men prefer to build their own houses, rather than to buy those equally good huilt by others. Ilence, houses can always be bought cheaper than built. Jut, is lierds, instead of living in some vacated nest, prefer to build a new one to their own liking, so men, unless too poor, should rather huild than Luy; for, otherwise they will wish this different, and that bettered, all their lives, and probably spend more in "alterations" than the extra cost of a new house. One may well be content to live in the old family mansion, consecrated by the joys and surrows of his parents and ancestors, and by the sacred reminiscences of his chiddhoorl; but give me a relatively poor house of my own erection, in preference to one built by some stranger.

4. what constitutes a perfect home.

That which comlines the most iustrumentalities for comfort and enjoyment, especially domestic-he only rational end of any dwelling-only a few of the most important of which we will now name, leaving others to be developed as we proced.

To inclose space is the first and main object. This is effected by making walls, fluors, roof, ete.

Strength and tioutness are required; the former to resist winds, and the latter to exclude rains and colls, and include warmth. Ligir is nerded, and secured by windows, as is also warmth, which should be easily created, cheap, governable, and
complete; for what comfort can be taken in an open barn of a house, the chilling blasts pouring in through a thousand insolent apertures, freczing one side while you roast the other, and exposing you to every sulden change of temperature.

Complfte ventilation, under control, is another; for every human being requires a copious and constant supply of this commodity, so indiapensable, not merely to human comfort, but even

- existenc.

A suit of rooms is also requisite; one for cooking, another for family use, others for sleeping and other purposes, and all so arranged as perfectly to subserve their respective ends, and, of course, easily accessible from each to all, effected by doors, stairs, entry, etc. And these rooms should be conveniently located, as regards each other, and enpecially arlapted to facilitate family cods, house-work in particular. Practical house-keepers know that it takes twice the lator to do up a given amome of work in some houses as in cthers. To have each room and its appurtenances, and all the romes, as regiateds each other, so placed and arranged as to have every thing handy and convenient, and a place for every thing, is indeed a great desideratum. How much fretmhess and ill temper, as well as exhaustion and sickness, an unhandy house occasinis. Nor does the evil end here. It oflen, generally, ly perpmally irritating mothers, sours the tempers of their children, even nefore mutu, thus rendering the wholo family baddispositioned ay natume, whereas a convenent one would have remiered them constitutionaily amiable and good.
beanty is also desimble, as gratifying an important human faculty.

A good bempma spot is also necessary, and one adapted to the proposed kind of house. The same money will often huild a far better honse on one site than on another. A superb building sipot was one of the three botives which induced me to build where d did-the owher two being grod water, and an excellent fruit lacality.

As to what constitutes a good building spot, "many men have many minds." Some prefer valleys, streaus, and lawns; others water scenery, elevations, and sightly prospects; but I confess partiality for the latter. Give mo a bcautiful landscapo and an
elevated site. This also guarantces a fresh, dry atmosphere, in place of valley fogs and miasms, together with whatever summer brecze may be afoot. And what if it is exposed to winter's bleak winds? Are they not bracing and healthy 1 Yet a plan will soon be proposed which will enable you to defy them, yet enjoy summer's balmy breezes. At lenst, do not build in a mud-hole. Yet good water, and handy, is most desirable, and springs exceed wells.

But, be your site where and what it may, let it and your house be adapted to each otner. Some sites are admirably adapted to one kind of house, yet miserably unfitted to another, and tho reverse. Choose your site with reference to your general plan, and then modify the latter till you effect a perfect correspondence of each to the other, and adapt both to your own wants and taste.

SECTION II.

tile gravel. whll plan.

5. nature's building material.

Nature has made ample provision for supplying every legitimate want of all her creatures. Behold in this her tender fondness, her matemal care. Ifence, since a comfortable home is one of these matural want, has she not made perfect provision for this home-demand of all her creatures? Nor for rich merely; for, does not hor provisionary care extend to her mecty creatures quite as mach as to her more favored childien? Is mature so aristocratic as to provide homes only for the rich? Does not her vast lahoratory abound in some "coarse homespme", about as promotive of human confort as her more expensive materials? Ye lumeless poor, he assured your mother has not forgotten you. She has provided some cheap and comfortable buidding material, if you only knew what it is. And in various climes it is exactly fitted to cath clime-in cold latitudes, one every way fitted to withet:mad and foep out cold; another in warm climes adapted thereto; in damp places, sumething ndapted to them; and thus of all the other combitions of all climates, for nature's provisions are all prefece.

Before considenisis what this material is, let us seo what it is sor. Nature's building material is abmunt everywhere, cheap, durahk, and complete throughout. Of course what is oljectionnble is not hers.

6. wood is ommetionable.

Because the whole of the carth's surfice is or will ultimately be required fir raising food for man. All nature's conomies
peint to the greatest possible number of human beings she can feed and clothe. For a time yet, or till she is well stocked with human beings, that surface is of little account, and can just as well be spared for raising timber fur lumber as not. But let carth's population increase for five hundred years to come, as fast as it has for one hundred past-and it is sure to far more than do this-and her entire surface will be densely populated. But to raise wood enough to erect and repair all the human halitations then needed, will require immense tracts of land, which otherwise could be appropriated to raising food, which would allow a far greater number of human beings to inhabit and enjoy earth and her luxuries, if there were some other building material, than if wood wero mainly used. The strife will then be between treo and man, and will be short. The great consumption of food then will also render land so valuable for horticulture as to render wood too dear to be bought for building, even by princes. It is even now becoming enormously high in New York, namely, good pine $\$ 35$ to $\$ 45$ per 1000 feet. Then what must it become in fifty ycars?

Wond decays, whereas economy requires that honsis, once up, en-lure like time, and improve by age. This leing olliged every fow yearn to pant and repant, to repar and re-repair, and even then to have your house perpetually rotting down upon you, is a defert ton graphle to daraterize a proper huiding material.

Woud houses burn durn, often in half an hour; whereas a complete hense must be incombustible. The ravages of fire in citiey and towns are horrible, beyond almost any other haror to which man is suljected; and even a country fire, if ouly a stahle, is awful. No! nature's buikding material will not remiler her occupants liable to he turned by thousands in an hour out of comfirtahle rooms into houscless streets, perhaps in a night of darkness and storm, of snow and blow, terrible of itself when warded off by a comfortable house, but awfully horrid when forced out of a comfortable house and warm bed, perhaps sirk, or aged, every article of comfort and luxury, the accumulated toil of years, consumed in a moment, perhaps a beloved child or companion scathed by flame and suffocated by smoke, bumed to a crisp. No, no! wood is not nature's buidding material,
although a rood house is indeed better than none, and will do for man when he can afford nothing hetter.

7. виск.

Ah, now we have it. Slow to decay, incombustible, requiring little of earth's surface for its production-yes, brick must be the very thing, says one. Not so fist. It wastes by time, is marred by frost, expensive, both in cost and laying-ino much so to be nature's staple building material-for nature cares for her poorest sons and daughters, and will not put good homes beyond their reach. Still, brick is by firr preferable to wood, and will do in many localities, especially where it can be made on the spot, yet is too costly to transport far. An anecdote. A prond English lord spout an inmense sum in erecting a marnificent manorial mansin, and invited another nolle lord to examine, and say what he thought of it-proud to enlibit his riches and his taste. As his pinion was solicind, the visitor replied: "Well dome for a
 removed every brick, and rebuilu of stone. "Then," it is replied, " jou recommiend srone hoeses."

Not exactly. Very laborious to hew them into shape, very cold in winter, and damp in wet weather, either expensive or elso uncightly-there must be something else better than this, than brick, or woot-some perfect building material. What is it?
8. the lime, ghaybl, and stone walle.

Simplicity and elliwiency characterize every work of nature. Her building matrial will therefure be simple, durahle, easily npplien, every where abumbut, casily remdered beautiful, comfortable, and every way comphte. All this is true of the eravel wath. It is made win, lly ont of lime and stomes, samd included, which is, of course, fine stone. And pay what is lime but stone? Made from stome, the buming, by expelling its carbotic acid gas, separates its particles, which, slacked and mixed with sand and stone, ruats them, and atheres both to them and to itself, and, reabsorbing its carbonic acid gas, again retums to stone, becoming more and still moro solid with age, till, in the lapse of years, it becomes real stone. By this provision of nature, we are enabled
to mold mortar into whatever form we like, and it becomes veritable stone, and ultimately as hard as stone, growing harder and still harder from age to age, and century to century. Even frost and wet do not destroy its adhesive quality, after it is once fairly dry. The walls of my house stood one severe wintef intirely unprotected, cven by a coat of mortar, vithout a roof, yet neither peeled, nor cracked, nor crumbled, one iota. Does frost crumble or injure a brick wall? Yet what but lime forms its bond principle? Nothing? 'Then why should frost injure any wall having lime for its bond principle?

Reader, reflect a moment on the value of this lime principle. What would man do without it? IIow useful to be able to rast or spread mortar into any shape, and have it harden into stone. Without lime, of what use brick?. How could we make insile walls, or hard finish them? Let us, while enjoying the luxurics secured ly this law, thankfully acknowledge their source.

Obviously, this hardening property of lime adapts it admirally to building purposes. Mixed with sand, formed with brick or stone into any shape we please, it petrifies and remains forever. How simple! How efliectual! How intinitriy useful! Like air or water, its very commonness and necessity make us forget its valur.

And can not this hardening principle be applied to other things as well as to mortar? Especially, cam it not be applied as effect ually to coarse mortar as to fine? Aye, better! If it will bind fine sand particles together, why not coarse stones? Especially, coarse stones imbedded in fime mortar? Lime sticks to any thing hard, and sticks together any two or more hard substanees, coated with it and laid side by side, whether large or sraall. It fastens stones and brick together, as now usually laid up by the mason, then why not if thrown together promiscuously? Fact and philosephy both answer allirmatively.

In 1850, near Jaynesville, Wisc., I saw houses built wholly of lime, mixed with that coarse gravel and sand found in banks on the western prairies, and underlying all prairio soil. I visited Milton, to examine the house put up by Mr. Goodrich, the original discoverer of this mode of building, and found his walls as hard as stone itself, and harder than brick walls. I pounded
them with the hammer, and examined them thoroughly, till fully satisfied as to their solidity and strength. Mr. Goodrich offered to allow me to strike with a sledge, as hard as I pleased, upon the inside of his parlor walls for six cents per blow, which he said would repair all damages. He said, in making this discovery, ho reasoned thus: Las mature not provided some other building material on these prairies but wood, which is scarce? Can wo find nothing in our midst? Let me see what we have. Lime abounds on them everywhere. So does coarse gravel. Will they not do ? I will try. Ile first built an academy not larger than a school-house. Part way up, a severe storm washed it, so that a portion fell. His neighbors wrote on it with chalk by night, "Goodrich's folly." But, after it was up, he wrote in answer, "Goutrich's wisdom." It stood; it hardened with age. He erected a harksmith's shop, and fimally a block of stores and dwellings; and his flan was copied extensively. And he doserves to be immortalizel, for the superiority of this plan must certainly revolutionize building, and especially enable poor men to build their own homes.

All the credit I chaim is that of appreciating its superiority, applying it on a large scale, and greatly improving the mode of puting op this kind of wall.

9. sfiection of the matertal.

In buiding on this primejte, the first object is to sclect the right matermat. And, firtumately, this abounds in some form on nearly every square mile of the earth's surfice.

All that is wanted is stome and lime. The stone requires to be of varions sizes, from tolerahly fine sand, all the way along up to stumes as lage as you can woll deposit in your wall. A wall male simply of lime and samd will answer, yet stones add consilerally to its solidity, esperially while the wall is yet soft, and serve tho purpose of hulding a wall up while it becomes hard; but once hard, sand and lime make just as solid a wall without stone as with. In fact, it makes little difference how coarse or how fine the material, after it is once up. There must, however, be enough of the fine to connect the coarser stones together.

The materials of my own house are too conrse. Nore sand and fine material would have been better, but I had to haul this some two and a half miles, up heavy hills, and I used as little of it as I well could, and in place of hauling sand, pounded my slate stones the finer. Oyster shells, brickbats, furnace cinders, or any thing hard, will answer just as good a purpose as stones. All that is required, is something solid for the lime to adhere to. The more fine sand you have, the more lime will be required, the more coarse stones, the less, and the more solidly the materials are compacted together, the thinner will that wall need to be. Prob. ably the very best materials will be found in those gravel knolls which abound throughout our country, which are composed of all sizes, from middling fine gravel, all the way along up to stones the size of the fist or head; and wherever such a bank can be had, all required is to mix the lime with it, and throw it right into tho wall. These banks are found all around Boston. On every railroad diverging from that city is found just the right material every time the road cuts through a bank; and the clearer it is frim soil the better, yet that soil does not materially hurt it. In fact, in the absence of finer particles of sand, it may aid compactnu..s. That ridge nt the enst of Portland, Maine, on which the
 frairieq alound in just the required material, either in oceasi, mal hanks there found, or two or three feet below the surface. A!! the weils I ever saw dug on the praries threw up just the right kind of gravel, nor do I remember secing a bank dug throngh, which did not develop them. In Cincinuati, in several places, I observed it in the digging of cellars, particularly just below the Burnet House, where was an unoccupied lot, the contents of which I examined with this view. I have nowhere in New York eity seen a cellar, or sewer, or diteh dug, which did not throw it up; and all that is necessary to build a house in that city, on this plan, is to throw the stulf, namely, grayish, reddish sand, and stones, right into your mortar beds, mix with lime, and then shovel into the wall. This will save even the carting of the materials, both the carting of the brick, and the sand dug out of the cellar of the house to be built ; and I verily believe, in New York city, the walls of a house can be put ud on this plan, for
one tenth what they can be on any other, and better every way than brick.

In Muhawk valley, and all aromd Albany, the right materials ahound. Thuse pebbles mixed with coarse and fine sand, which line the banks of rivers and lakes, are aiso suitable. Any chipings or stones, out of the marthe yards or stone quarries, where they commingle stones of all shapes, from small sandy particles, to the size of a man's head, are suitable, yet will require some sand to fill up the holes between theso coarser particles, in orfler to give the requisite sufface for contact and adhesion.

Around Cincinnati, in those ridges from which stones are quarried for eellars, those chippings let ly working these stones for walls, are just the thing, or such broken stones as are used for mamamizing roads. Six miles west of Cleveland, I observed in crossing a river, where men were at work improving the road, a hall clay, half stome fermation, hard enough for this purpose, and I dombt not, over that whole tract will be fomed layers of stone junt hencatio the soil, suited to this kind of buildiag; and thero
 slateretones.

My own house is built entirely of slate-stones, mixed with this gravel. I crected it on an oval knoll, the top of which I had to take down some six fiet, in order to obtain a level foundation. Afire removing the dop soii, Ifoud various layers of stone of varione thickuresess, some so solid as to require bhasting, others full of seame, aud earily worked up ly the bar; others still, hroke up into thin shate pieves, so that Ihat and sorts and deseriptions of stumes. Now here were thousambs of loads to be carted off, unless I employed this mote of building; hut by enploying it, all Ihan to do was to quarry the stomes, and shovel and wheel them diveetly into the mortar-beds, aurl thence into the wall, so that 1 had not even to henl the grecel, and this hating item alone saved me comsiderable expmsi, far wo have no briek-yard short of five mins. lin diguing my well, which passed directly through this same slaty, rocky fomation, and was all stone, the chips thrown out were exactly what was wanted in the wall, and were all used for that purpose; and to save sand, I usually employed one to pound up the slate, whiic another was shoveling it. This was
done in order to reduce these broad thin slate-stones to a more solid, consistent mass, that they might touch one another oftener, so that the lime could have a chance to combine them together; and it is worthy of remark, that everywhere on the earth's surface will be found either sand and gravel, or this slate-stono formation. Even clayey countrics, a litule below the surface, abound in a like formation; of course broken lime-stone will serve this purpose, and in many sections of our country are stones easily broken up by a sledge, at least when first quarried, thus furnishing both the finer particles and the larger stones in any proportion desired, and very easily procured. Even oystershells alone will serve to put up this form of house, by burning a part to fumish lime, pounding a part to serve the place of sand, and leaving a part in their original state, so that those persons who would economize, have only to order thuse very shells which the oyster-man has to pay to have carted from his cellar, on to your building spot. Most of the materials made in grading about our eities, will serve this gravel-wall purpose, and can be carted direclly from the hank to your proposed house, just as well as to the phace in which they are usually deposited. Bathast from wha will watly serve a like purpose. Brickhaty can also bo un- it ir this hime of wall, namely, breaking a part to subserve the pian of ame, the balace serving for stones. Clinkers, conldrow from furnares; nud blacksmiths' sifinges, in fact, any thing hard, whatever be its size, quality, or shape, will furnish the main hody of the required compost. All else needed is sufficicut sand to fill up the intermediate lioles or spaces, so that the lime can stick the various particles torether into a solid mass. Bul even if the wall is full of little honcy-comb holes, it will still he sulficiently solid. Of my own wall, I presume one quarter is composed of these honey-combloles between the slate-stones not filled with samd, but time lass alremly proved its abundant solidity. Not a single crack is to be seen, except some occasioned by the springing of an arch made over my well; and where the foundation gives, of courso this cracking must occur; be the material what it may.

From what has just been said, every reader will judge for him self low much sand and gravel he will mingle with his stones, or
stones with his sand and gravel. It hardly matters how coarse or how fine after the wall is up, for once set, it will stand, and grow mure solid with age. Of course, the best proportion, where they can be had, is a complete gradation, from stones as large as you can well depusit in your walls, all the way down to fine sand, so that all the particles shall completely consolidate together.

These remarks will enable readers to select their material.

10. lime, its proportion and mode of mixina.

These materials now require to be mixed with lime, and any easy mode of perfectly commingling these stones, gravel, and sand with the lime will serve the furpose. I have never tried mixing them in the dry state, but an certain this will answer a good purpose, but will probably take some more lime; yet I think it -better to wet the lime first, becanse lime incorporates itself with these stones better wet than diy: at least, I think the lime can be wet more casily hy itself, that after mixing with the stones. The lime I used was the coarsest, commonest quality, such as farmers put upon their lands, was slacked at the kill, and cost If cents per bushel. It was strong, but coarse-in fact, too coarse to be used for ordinary plastering, miess well screothed, and this took out something like a quarter of its bulk. I used this lime occasionally for mortar, threw these screenings right in with the stones and sand, allowing them to go as far as they might. My mode of procedure was this. I first made a mortar-hed, some twelve by sixteen feet, with a wide board, perhaps eighteen inches, all around the sides, yet a larger bed would have been better.

11. placing and woreing the montar-bed.

Very much deponds on where the mortar-bed is located, in doritg which these thre things require to be kept in view: first, to have it cacy of acesss for ereting your materials to it ; second, eacy of aceese with your moter, and third, easy of access to your walls. Probahly in no one thing, in this mode of baild. ing, ean a greater suving be effected, than in the best place for this bed. In building by this methorl, the first thing should be to provide water, and if you have to dig a well for your house,
dige it to begin with, and use its water for your line-bed, because a great deal of it will be reguired. After placing my mortar. bed, and arranging the water, a herghead of which I always had stamding by the side of the bed, I deposited ony lime, and found about six or eight wheel-barrows of this coarse, slacked lime, would make up as large an amount as my bed would loold. I ther poured in water, not mercly chough to wet the lime, but so that the whole mass would be as thin as milk, and stirred it up completely, so as to amalgamate the water and lime together; I then wheced in sand, and had one hand at the bed to stir the sand into this lime-water, as it was wheeled into the bed. One man would thus stir for about four or five wheclers, he moving the plank which crosses the bed, and telling them in what part of the bed to deposit it. To eight barrows of lime, I usually wheeled in from sixteen to eighteen harrows of sand. If tho sand made it too thick to completely incorporate sand, water, and lime as fast as it was brought in, it was spread over the top about evenly, and wlinn the sind was all in, wherlers and all would begin at one cois."r, hue the contents hack twand them, throw in two or three fa!. of water. if required, or emough water to mable them com-
 in,:" this varout corner, and so keep alliug water, while they shoscl over this line and sand, so as comptetely to mix them, and then throw it hack toward this conner. Some fifteen or twenty minutes would suffice to completrly mix the lime and sand together, and when finisher, it would bo left so thin ns to follow the men alout as fast as they worked back toward the opposite conner. I speak of this thinness, because lime mixes so much better, when a large amount of water is used, than when it is rather dry.

This eperation completed, there was now a vacancy at the opposite coniner from where we started. Into this eorner I would now set four or five men to wheeling the slate, chlps, and materials above described, while the hatnd in the bed would spread each barrowful, as it canc in, and threw over three or four shovelfins of this thin lime and sand. After a fow barrows had come in, they would be able to spread their coarso rubblo stones, as they dumped it by running tho barrow up to the top of the pile, and
dumping it along down its sides. I would now wheel in from sixty to cirghty harrows of these conrse rubble stones, making something like a humbed or more barrows of comse slate-stones nad sand to these cight harrows of lime, and these cight harrows of slacked lime were equal to ahout two, or two and a half, of grod stone lime, maling from thity to furty parts of gravel and stone to one of stome lime.

1, however, abmit that this is too litthe lime in proportion, and yet I made many buls with even less lime, rdatively, than here specified. To one bed of cight harrows of lime, I put one hundred and twenty of other materiats. Still, I did this more to try how litte lime would answer, than from any motives of economy, and should recommend that about one barwow or barrel of stone and lime, to twenty, twenty-five, or thirty barrels or barrows of sand and stone. Yet, as ahealy olverved, the kess cuarse stones and more the sam, the more lime will be required. Amt for this reacon: to give a stmo ns higy as a man's head contact, it is requinte that it he eented with lime; whereas, if hroken up into sandy particles, eath partide has to he coated, in order to mako then stiok tu sumber, so that it requires much more lime for a stome brokes up than mot boken. Henee, the comser the material, the dess lime will asewer. In my first and seemd stories, I used more lime thatn speciffed alowe, but berame fully satisfied that less would answer just ahout as well. In putting up my thirel story 1 drew only gion bushle, costing $\$ 1125$. 1 haite out of it two sides of a cistern, 2 fret thick at bottom, 18 inches thick at lop, 12 fort one way, and 10 the other, and 9 feet deep. 1 erected two or thre fuateon fint pillars, and used some of it for some oher purposes, amd hal a linte fef when the story was dwe. 'That story wa le feet and 8 inches hish, 1 foot the c , and 2.sf fort in cirebinforece. Of conse I estimated that it tork somewhere betwen nite and ten dollars' worth of lime fer the stery. On inguinisg how mach lime had been drawn, and exti-
\because mating the momat ued, I was perteety astominhed that I had used so litte, and the more so when the whomen and visitors criticised the honey-comb aperarauce of tho wall, and prophesied that such a wall positively conld not staud. Still, there it stands, sulject to the inspection of any who pleaso to examino it. In put-
ting up my next story, which was 11 foet 2 inches high, and 10 inches thick, I thought I would be alittle niore liberal in the amount of lime used, especially since even a liberal supply would cost but a comparative trifle, and on footing up the cost of this story, found it to be ouly 810 , that is, less than 250 bushels of slacked lime, yet tucording to my hest jullgment, 60 or 70 bushels of good stone lime would have done the work quite as well. Indeed, I could hardly believe but that I had mate some mistake in estimating the lime in the story below, until my estimate of the lime used in this story confirmed my previuns reckoning. Let the reader figure un the amount of square fect in the wall, and he will seo that here is sufficient material to build a house two storics and a half high, of ordinary distance between joints, and 20 by 40 fect sides. Of course, in many plares, a higher price would have to bo paid for the lime than I paid for mine, perhaps 20, possibly even 50 per cent., yet this would only take from fifteen to twenty dollars' worth of lime, for a two and a half story house, 20 by 40. Over the whole West, the usual prico of lime is about 12 cents per bushel for stone lime; and as ono bushel unslateded will mako about two and a half to three when slacked, its cost will vary searcely a fraction from what I paid. I would suggest that those who are any way timid or cautions in this matter, allow about one part of goorl stone lime, to 20 parts of sand and stones.

One additional word alout the morle of mixing. Let the superintendent of the building simply use his own common sense. I have deseribed the way I found most advisable. Others may find other ways, devised hy their own causality, just an good.

But let us now return to our hed as left, namely, formed of intermediate layers of these coarse stones and gravel, and sand and lime. Our next olject is to prepare this for the wall, and deposit it therein. Thus far, our materials are nut fairly mixed, only deposited in layers, preparatory to this process. My modo of mixing was this. Adling a little water so as to make it as thin as it well could be and shovel without spilling ; to shovel it over about twice in this bed, then shovel it into the tub, making three shovelings or mixings. This tul) was then hauled above by horse and tackle, and emptied into unother smaller mortar-bet, which dumping was equal to a fourth shovel. This was shoveled

- into the harow to be whelded to the walls, and from the barrow shoveled into the wall, which male it equal to six shovelinge, so that while getting it to its phace, we were also duly mixing it. When we list bugra, we mixed it in the bed by working it over and over, something as we would work mortar-beds, but foud it so hard and dilientt that we maturally alopted this procese of shoveling it over just deseribed. If you have no such tub for hauling, of course you will shovel it over twice more before throwing into your barrow, hut my own observation and experience have prepossessed me in favor of the tub and tackle. Yet before riggine my tub and tackle, I adopted a method somewhat as follows: Taking a 12 feet board, 16 or 18 inches wide, and sawing it in two in the middle, I placed these pieces side by side, and surromided them by seanting, 2 by 4 , thus making a small mortar-hed. I then set this bed up on four logs, perhaps 7 feet hich, wheeled from the mortar-hed and shoveled up on to this hed, and from this hard up into the walls, moving it as occusion required. Sometimes I womb sot a couple of horses, such as masons use, throw some thoor timbers arroses, fut one of these small motar-leds, Withont lere, "pon this scamiline, and whel from the mortar-bed, mul shovel ip into this small bed, and from this into the wall. To varions contrivanes of this sort I resment, nud on one ocension 1 erceted finu or five small heds, one right above another, hand min shwwher sheve over more and wet the material, and showel it up to the scomel, he to the third, and the last one shoveling it iuto a barrow, to be whered to its dectination. Theso small movahle beds I fomid very greatly to facilitate work, but dis was hofore 1 rigend my tambe and cul.

The momber of hade requived to work to advantage is from ive to surnh, jet three ean do quite well. One is wanted to do Ad johs and crames, provile water, hing and cary toms, or bo water ernerally. Owe, and that your best hand, is wanted in tho mortar-hed, and he shonh be told, "never mind your boots; when the lime cats them up I will get yon more." He must go, right into tie thin lime and mortar, must stir the water in with the lime ami same, must sherel this lime and sand in with the coarso materinls as they are wheled into the bed, and fiwally mut shovel over these same materials, and fit and temper them for the wall.

I have often mentioned bartows. Of these, thee are as few as will work to advantage; one being repuired to whee materials into the bed while it is being womed, therely tempering it, sumetimes adding a little lime, then euarse stones, and at another time, fine sand, according as the bed works, nad two are reguired to carry the material to. the wall. The second hand also fills the tub, or the harrows when the tub is not used. A third will ho reguined to empty the tub above, and fill the barrows, and a fourth to wheel these harrows to, and shovel their contents into the wall, while a fifih will be required to stimd on the wall and stow away the contents, pack down where packing is requiren, place the big stones, and see that every thing is placed just ns it should be. This last place should be filled liy the boss of the wall. Oecupying this position, he can see whether the material comes as fist as it should, and if not, should inruire into and rectify the cause of dulay; cam also see whether the material will hear more stones or sand, or require more lime, see that the bonrds are properly placed, which requires good juldment and an acemrate eyc. Another lund is required to firg scaffiolding, preperly phace tho bex boards (of which pressently), selting up and plamting tho window and door trames, and do up the general carpenter's work required. Any important building requires its carpenter, and this should be the duty of this carpenter while the walls are going up; still, a small house can be built without the constant employ'ment of a carpenter, provided the owner gets his window-frames made, and has au accurate eye, skillful hand, and a good common-sense mind.

12. nelative cost of the ghavil-tall.

One important feature in this mode of building is now rendered aparent, manely, that this material is handerl manly ly the shoerel, and of cousse hamded a great deal foserer than by tho mason. He is olliged to spend comsiderable time in phanling his corners, and then in placing his lines, and also in working with exactuess to his lines, and after all is obliged to place one hrick at a time, and use a little mortar between, whereas, by the method we are describing, the whole moss is handled just as rapidly as the shovel can be plied back and forth, and one hand will turn
over an immense pile of these materials in a day. The diference between shoseling a harrow load pell-mell into the wall, just as fant as yon can throw it, and between laying the same amome of material, brick by brick, and one trowel full of mortar between each, besides taking time to spread the latter all so nicely, is great. And then, too, this shoveling can be done by the commonest hands, whom you would pay from $\$ 10$ to $\$ 15$ per month, whereas, brick must be laid by men who command $\$ 150$ to $\$ 250$ per day; a bricklayer costing some three times as much as the common laborer, and yet, not depositing a quarter as fast. Tho reader will please notice how very great tho saving effected by this mode of forming wall, over nul above the brick and mortar mode. Nor cam it with propriety be urged that the cost of getting the material reaty for this gravel wall, is greater than for the brik, siof have mot the brick and mortar to be carried to their phace, junt as mom as this graved and lime? Aud pray, how muh thore will it cost to get our materials to the spot, than to get brick and buertar to the sablihd ready for tho masen? Will it not cont comiderahty loses? Amd does not our monde of scaflolding cost much less than his? He must be tended, and in iny ofinion, the matrials for the gravel wall can be all deposited in the wall cheaper than the mason can be merely tended.

It will mot than as mula lime to buid a given amount of wall, ly this metlond, as to make the mortar for a brick wall. It will take deas labur to mis these materials, than to mix the mortar for the manon, nud thece materials ran he carried to their phaces eacier than the l, rick and mortar can he carried to the masom, so that wo save tuason's wolyes aml cost of hrick, which are the main items of cost in a briek wall, for every stome in a gravel wall andere jost as armal a purpene as the same amomet of brick. A pile of theso course roblle stomes will whe an for in our wall, as the same anomut of brick will in a irick wail, and in every respect is worth juit as mud. The reader will now perceive u hy we clain so muh superionjty in cheapmens in our wall, over brick or wond. Brick hawe to be carted, and in amety ninio cases out of a humbed, these rubble stouns can be carted armod deal cheaper than brick, sund where they are dug right out of the erllar, even earting of the brick, as well as their cost, together with the cost of laying, is
saved. All about it which eosts is the lime, which we have just seen to be a mere trifle, and the labor of mixing and getting the materinls to their places, which can be done by the commonest hands.

13. foundations.

IIaving now described the material, and its mode of mixing, we proced next to speak of the fomblation, and manner of placing the boards, for tho reception of this material. This foumdation may be the same ns for any other house. Of course it requires to lee solid, and should be set so derply into the groumd, that frost will never heave it, and be so guarded and solid at the base, as never to settle, for wherever the foundation gives, of course tho buiding must erack, whether brick, stone, or wood. My own house is founded mainly on solid rock, but where this can not be harl, a tronch should be dig, three, four, or five feet derp-flagstones the wilth of the wall, or even wider, and as long as may be, or other large soljd stones laid in the bottom, and the ordimary mode of building foundations be adopted. From experience I have uothing to say respecting the foundation pecular to this plan, as differing from the ordinary methol, yet I have a suggestion to make, or rather to say what I would do if I were to luild agrin. I should employ water-lime, or cement, in phace of com. mon lime, and after laying a few stones at the botom, should make the compost exactly asdescribel alove, excepting the addition of as many large stones as possible, and a free use of water limf, or eement, in place of lime. Of course this water-lime must not be mixed till just as you are ready to throw it into the trench. It should lie thrown on to your pile of stones and sand, shoveled orer two or three times, so as to mix the two tngether completely, while in a dry state, then wet, and earried to your wal, mud deposited, hecause it sets rapidly, and that set once broken, its value is spoiled. If told that the frost will spoil it, I reply that while frost spoils a thin coating of it, it will not injure a solid wall. Besides, frost does not break its set, only occasionally makes cracks, yet even in this case, I do not see that theso cracks would materially injure the foundation. At all events, I should try it and run the risk, or if afraid of frost, a single tier of
brick, lain from the arombd up to the top of the fommatiom, all archull the ontsibe of the wall, womb prevent the forst from dining any danage. buikers in New York use this comme largely for fommations. Of conse it is quite as suitable for foumbitions when mixed with the materials just deseribed as when used in nuy other way.

If your ground is casy to dig, and soil sumfiently solid to allow it, you can dig your treme cactly the size you wrobld have your wall, mix your ecment with your gravel and coarse stones, and dunp the whole mass right in from your barrow, without even wating to shovel it in; or if gom prefer to dig your cellar firv, ather the dirt has all heen therwn out, erect heards on one side, and let the eremed form the wher side of this fomudation wall. Still, not having had experione in this respect, I speak only from eonjocture. but about the depth of your cellars, and the height of your fommation, I would remark that my own tasto
 instend of dixuing town very derp. Your collars should be light, and well wothated. Nonhas em he more unhonthy than for veretables to dreay in a deve cellar, where there is me chance for ventilation. The chlowia aud the poisomons gases, generated liy the decompesed mases, aseend throngh the flow and cormpt the air which jow and your chitdren are to heralhe, whereas, if yome houses are sulliciently high, and windews arranged so thet tho "pull air cal swerp hrobh, yon will save your dowtor's hills. Nor should the cellar be a little pit hole under ome comer of your bouse, but should embrace the entire room moder that house, for the entire cellar story cim be made an-t usifill for one furpose or another, and is at least worth the small extra tronkle of its construction. Your fumdation you are ohliged to build, and to phace it some three fect below the surtise of the gromul. 'lben, by carryiur it thre or four feet above, your honse ias well set up, frobected arainat wet, nut of the man, and your hacoment stomios ran bow he lighted, and thas rethlered atakable for many doe martie purposes. If you choose to settle your fommation fimer fect, and carry your wall two fect nhove the ground, you are sarcoly in danger from finst, have cool cellars, and very pleanatit ones, but of these things every builder inust judge for himself.
14. mode of placing the doarde for boxes.

This involves the most important point connected with this mode of building. Mr. Guodrich's mode was to use one tier of boards, and to nail them on to scantling or standards, and keep them from spreading by braces, deposit his material between these boards, wait for it to harden, which usually took some twenty four hours, and then raise the boards a tier higher. I have adopted various modes. At first, I made tapering sticks, perhaps a couple of inches syuare, and a little longer than the wall is wide, having a noteh on one end, and keghole at the other. I placed these across the wall, set my boards on to those sticks, allowing the board on one side to set into this notch, so as to keep it from spreading at the lottom, and drive a key into the hole on the opposite side, so as to keep the other side board from sprealing, and prevented the top from spretwiner by making a couple of notehes in a piece of board, perhaps an inch thick, and two inches wide, amd setting these two notches down on to the top of the boarda. These sticks thus left in the wall are easily knocked out and u ed over again. This kept their thp from sprading, but I frmm it very difficult to kecp the wall true, and very laborions to luist these buards, which I usually did after they had remained alout twenty-four hours, and so adopted for the upper walls the fullowing plan:

I took seantling, two by three, or two by feur, sawed them eff so that their length would correspond with the proposed height of the wall, and set one row of these scantlings on each side of the wall, but withen it, and placing them usually some ten, twelve, or fourteen feet apart, bracing these scantling firmly, and nailing the hourds to them, so that thry would remain in the voil. Wialow and door frames, of course, served the same purpose with these scantling. I usually placed one of these scantling at each outside corner, so that when the wall was complete, it would form that comer, and plastered the fuishing coat right over them, first driving lath nails in, to hold the plaster. I can occasionally see a small check along the line of these scantling, and in building again, should havo this corner scantling just outside the wall, so that the boards would come between this scantling and the
gravel. It is diflicult to have any except the corner ones outside the wall, because your hoards rerpuire to be hoisted, whereas, if these boards were between the material and the scantling, such hoisting would be dillicult. And then this scantling in the wall serves the purpose of stendying it until it hecomes hardened. To a wall of 32 feet, 1 had three scantling on each side, yet as the corner connected two, it furnished me fuur places for mailing the loards. My middle story had only two, one at each comer, and one in the middle, and for anght I know, answered just as good a purpose. Wherever I had a portico, I usually hraced them from tho outside, that is, from the portico, bechuse, when braeed from the inside, they interfered too much with my whecl-harrows, lut where there was no portico, I braced both the outside and inside ones to the floor timbers. It is a material point to have these standards, as 1 call them, firmly liraced, for after your wall * beemmes cight or ten feet high, if it should beerin to sag a little, the pressure would be considerable. In this respect, I was too careless, so that my walls settled in from one to three inches nt the Lop, which of course 1 hat to fill ont with fine mortar. I pushed and braced some of then back to their places before putting on the floor timbers, thas kecping the wall straight. Straightcoung it after it has sarged is easy, yet a very material point, for the outsile of a house must needs be straight, else it will look bally; and if these stadarels nond hoards are properly secured, it is mey to make your wall porfertly straight. In my middle story, iny haste prevented 1 יy looking duly to this point, yet fomm it casily remmedid, simply hy a litte attention at the proper time.

The monde of frocelure, then, touching this point, is simply this: ather yon havo prepared your fombation, latid your floor timhors, phed your stamdards, and are ready for your walls, procure common pine box hoards, in inch in thickness, or more if youl like, and as near a given width as may be, nud cut them off to the length reyuired tior your wall. Thes, suppose your wall is 32 feet on the outsile; you can easily procure 16 feet boards, so that two lengths will scive for the outside wall. Of course, the inside borarls must ho shortened a trife, according to the thickness of your wall, which should bo estimated, and your boards
made to correspond in the start. Of these boards it is well to have at ieast two tiers, and perhaps three is still better. Suppose your house to be 32 feet square, or an octagon of 16 fect sides, it will take ahout 250 feet in length to make a tier all around your house, and if these boards are 18 inches wide, and you have two tiers, it will require about 700 feet, or from ten to twelve dollars' worth of these boards. But when they have served this purpose, they can be used as waste boards, for many other valuablo purposes about the building, and perhaps used for roofing. They should then be cleated, to prevent their warping, perhaps at cach end and in the middle will be sufficient. Then one tier should be nailed on to these standards, yet the nails should not be driven completely in, but a half inch or so should be left out, so that the claw of your hammer will easily draw them, when required to bo raised. But these boards will be likely to spread in the middle, which is easily obviated, by taking any small, thin, waste boards, laying them across the top of the board, every four or six feet npart, and driving a nail down through these cross pieces, into each box board. These nails should be set slanting outwardly, so that the bottom of the next board to be put on shall just strike this uail. Thus, tho bottom of each tier of boards will bo kept from spreading by these nails, driven into these cross pieces. This mode of putting up these boxes is simple, and can be done by any common man who has an accurate eye and tolerably good ingenuity. Indeed, my common laboring men have often put up these hoards as well as the carpenter, yet he always placed the standards, and still, any body can plumb them and brace them when thus plumbed, so that a tolerably ingenious man can put up all of his own house, from cellar to garret, and the more native ingenuity and judgment he has, the letter walls he will make. These boards thus placed, the material for the wall before described may bo wheeled and shoveled in between them, or into the boxes thus formed. Still, it should be shoveled in so carefully as not to displace the boards, or break these cross pieces. But, if perehance a board should become displaced, your true policy will be to stop at once, take off your board, push off your wall material till you come down to whero it is true, replace your boards, and go on. I mention this, because, in eeveral in-
stamer in my own homse, where a hoand had spmarg ont, instead of stopping to fix it at the time, I let it [ass, but finned whert tho wall come to he finished, that that hage had to he hewed duwn, and I might almost as well have maletaken to hew down solid stome. Atier one tier of hoards has liven filled, nail on your second, and till them, then take ofl your first tier, and mail on for your third, harn the second, amb mil on for the fenth, and so on,

15. scapmombing.

If your walls do mot execed nine or ton feet high, agood whoveler can manage to shosel the material into the wall without any scambining. We can set arememmed to throw the stall so that it will fill over into the lox, yet this involves a gereat deal of hand work, so that cuen for a wall mily toll fect high, soatholing is desiralle. I eflected mine as dillows: Jaking two by theec, or two ly four seantiang, I manle harses alout four or five feet hierh, just sumh as the masen would mike for ghastering over hearl, and

 earry up gour wall hetwern two doors, or two wimbons, as high

 soction to anollor, lat all this will depend on haw matay hands

 fin the thou timbers, in sewen days. Still, when not hurried, it

 Bat sith iwo tier of homate, there is very litule danger of their fallims. Vet in coma wall shombl fall, there yome material is, repuinin: only to le shomed lank to your hed, rewet, and wheeled "gain lo yur walt. One of my upper inside walls I had earricd right up in the course of a formoom. After it had stoud seme two or three days, the carpenter removed some of the
bottum boirds, when the wall caved inf and fell to the bottom, because the surplus water of the wall had settled down, and the boarls had prevented the wall from drying or setting, whereas, if the first tier had been allowed to dry, such an occurrence would not have taken place. But there my stuff wan, cluse winy mortar-led, easily shoveled back, re-wet, shoveled into the tul, and another half day put it hack again to its place. The only time this kind of wall can fall, is before it gets fairly set. Once hardened, it becomes more and still more solid from age to nge, this being the nature of all lime and sand composts.

16. widtil of walls and their solidity.

My outer walls are as follows: the ground story 0 feet high, and 18 inches thick; second story, 14 feet high, and 16 inches thick; third story, 12 feet high, and 12 inches thick; upper story, 10! fieet high, and 10 inches thick. The 11 foet 2 inches elsewhere mentioned includes the wall to the buttom of the floor timbers, which are 8 inchers wille. Yet, if I were to buidd again, I shomlid deem it abumbantly strong to make the first story 14 incline, the sreond 12 , the third 10 , and fouth 8 . The coat of phastering, outside and in, of eourse, somewhat indreases this this knew, and greatly strengthens the wall: still, the additional cone of a wide wall over a marow one is companatioly trilling, and I therefore reommend the extia timid to make it thick cmonirh. If I were to build a two-story honse, I shomld make ny lanoment wall one foot, my main story wall 10 inches, and the "fipror one 8 ; yet should not hesitate at all to risk the lower shy at 8 inches thick, and the יpper at 6 ; and I hase this inforane on the solidity of my own walls. The inside walls of my first stury are a foot thick, and of my second 8 iuches. Now, my secoml story inside wall is alwot 3:5 feet long, 14 fort hioh, and only s inches thick, and yet it sustains the pressure of two stories and the roof. Of conse, if it were shorter, or lower, it would bo stronger. IIere is a loug, high wall, only 8 inches thiek, yet it supperts the downward pressine of the florrs and partitions of two stories and a roof, and the distance between these walls is 22 feet. And what is still more, the pressure from above comes down
on poste, 8 feet apart, and these posts, phaced right on the top of this high narrow wall, are held peofectly solid, These walls, with this tremendous pressure on these points, evince not the slichtest jar, not the slightest crack, and, of all the houses I have ever been in, I have never found any as solid as my upper stories. There those stories are. Let the incredulous ingpect them for themselves, and let that fact attest the solidity of this mode of luilling. Of course, the less honcy-comb openiugs there are in the wall, the more andid, but of this, the reader may rest assured, that this kind of wall, of a given thickness, is much more solid than a brick wall of the same thickness. And for these three reasons: first, brick are smooth, sn that the mortar rarely fastens directly upon them, but merely serves as a bed for the brick to lie in, and, in taking down brick houses, the mortar often cleaves from the lriek very casily. Not so with the stones which compose our gravel wall. Lime and mortar stick to stones a great deal better than to brick, partly becume theso stones aro so irregular, full of edress, rough on the surfice, and every way better for mortar to fisten upou than hrick. Secomdly, mortiar is usually worked too dry to form an adhesion to hrick, for, when it is thin ennugh to stick to briek, it is too thin to ho worked well, whereas, our mothod allows the compost to be just as thin as can be hambler with the shovel, so that when dremsited betwe en the beards, it hetw all down tonedher in one solill mase, cach fart sticking to carh, amb any surphes water there may be, settles akog down into the wall helow, thus rebinding all the patco together. Farh tior of this material also fistens to the tier below, just as firmly as if they all had been put up at once. Thirily, brick are bually lail in rows, so that whem a erack has ownsion to weme it panes alung between them, whemas, our stome and gravel, wing chrown in prombisfeomsty, and turned and wisted in every pussilhe direction, ofler much more obstroction to cracking, than a rewarly laid brick or stone wall. In fact, the very pell-me!l mode of dopositing these materials contributes to its stremesh.

I have mentiond pulting up inside walls from this material, but I think the better phan is to form them of studs, lath, and plaster, parlly because it is rather difieult to join then with the
main wally as you go up, because they are in the way of your building the outside walls, and for several like reasons.

If it should be asked, then why not build the outsido walls of studs and plaster? 1 answer, because that will require a frame, whereas, this does not; because your outside coat would not stick to lath, but will to this compost; because studs aro not sulficiently solid for the outside wall, and several other like reasons, such as rats and mice, danger by fire, greater warmth, etc.

17. door and window frames.

Window-frames should generally bed constructed so that the windows run with weights; probahly the best mode of managing this part, as adapted to our mode of building, is this: Take a thick plank, either pine or hembock-say the ends which como off from your floor timbers, or any thing from an inch to three inches thick, and the width of your wall-saw its length to correspond with the width of your window.frame-yet if it projects six or twelve iuches into the wall, no matter-make a noteh on eath corner of two inches, into which nail two inch wall strips, the length of your propesed window, or door, and nail the wholo - 0 pieses in all, viz., 2 plank and 4 wall strips-together. If your wall is 8 inches, these two scautling, which take up two ineme rin each side, will heave fiur inches between them, in which your witehts can play; all this con be done lig saw, hammer, a. 1 maik, anl hy any common hand with toole. All they require in twhe fited twerahly close!y, and nailed solidly. It may he a If to mail a hard up and down on the outsile of this frame, to prevent the motar from coming though betwern these seantlings, y.t, if yon have many stomes, this board is lelter off than on, for thee stemes can be so placed as to prevent the mortar from rumning thronchl, and to finten the wimdew-frames to the wall. In making the door-frame, its bottom plank will serve as your door eill, or stepring piece, and these scantlings will serve to mail your casing to, and fasten your inside window-frame on. I pun no carpenter, but it seems to me that all this rigging about windowfranes is not necessary ; at least, that a more simple contrivance can be adopted, yet what we have now described will serve for
putting "p our wall, and this is all wheh concerns this mode of buidding, properly moting. These window and door frames should now be braced inside, ahont midway up, clse the wall might epring them inward, which will prevent your windews from phaging freely, and octaion a gond deal of trouble in the lininhing. These wimbur frames can he set on binks if preferent. Mine are thus set, and a brick arch is spuag over on their toph, so as to prevent the wall from settling in their top. Yet it seems to me, any piece of timber, or stick of wood, even, thrown across the top, will serve every practical purpuse. Ladeed, I very muth doult the necessity of any thing, for it seems to me that our material will form jost as goon an arch as if it were had up regnlarly with hick, only kerp it from springing until our material hats a chance to set, and it will become just about as firm as a sulid stone.

19. TH: top of thas wail.

This, of course, remires to he permetig leveded, so as to form a bevel resting.phere form low timbers. To secure this lovel, of coura some leveling instrmant will have to bo uned, yet carpenters kuow how to make these, and they are easily applied. The Lop of the stamdals alowe described will hamish guides for jour hamds. Some the tiar of hoards shouht he so mailed that
 nond that your coarse monar can lee thrown in, so as to till it to within an inch, er wen a latit an ind of the top, ama a thin cond of time mortar will womple it; yet 1 should alvise lag ing a hanat on top of the wall the widh of the wall, se that your thoor tminers my hase a rentug phace mowe sold than the motar, beothm this mortar is get grean, whereas, this boat on top will so comatize the presuce as to herperery thing in phace. This bomitem thon be mailed on top of the stantlig, and thus still farther strengthen the watls. As som as gome wall is np, it is well to pace all your floor timbers, becamse they serve to stealy that wall, ind then you are ready for proceding with the next story.

19. temporati floors.

This mode of building requires a great deal of whecling and walking on these floor timbers, and this repuires a temporary fhor, and, in my opinion, the better course is, after your flowr timbery are down, to put down gour floors, of course first tilling up loetween your hoor timbers wilh this coarse mortar, and laying your door boards so that they shall actually penetrate into tho wall. These boards may get somewhat bruised in the course of luilding, yet, by taking due pains, laying down rongh, looso bonits, to be wheded on, and to eatch any stomes that may fall fiom the shovel, you will probally wain more than lose; and if it should rain after this foor is down, it will danage your floor very Jittle. An oceasional mail may he drawn, but is casily driven back. Ur a temporary fiom may bo uailed down, mate of hemlock, three quarters thick, such as is used to line hoors, and after your roof is on, put your boor proper on the top of this lining. But 1 only surgest this phan as a matter of reasou; I have not tried it as a matter of experiment, hat have felt the need of something of this sort. Supposing your honse to be thirty feel spuare, a housind feet of hoards, which might cost yon ten, or twelve, or filteen dollars, wold lay this temprary floor, and probably save in the work of putting up the building. Still, let each builder decide this point for himself.

20. anchorage.

All honses require more or less anchoring. By our mode of building, this will be eatily eificted as follows: As you plate your lloor timbers, nail them to the eve bards sin tep of the wall, on which they rest. 'This ancturs the flowe timbers to the wall below. Then, to anchor them to the wall ahove, bore holes with an inch and a half or two inch anger, giving them a slight slant oulward; hore holes near the end of these timbers, and right where the wall alove is to he placed, giving them a slight slant toward the outside of your house, and drive pine, and when yon build your wall around these pins, your floor timbers are anchored
abumbantly; and where these thoor timbers meet inside the honse, an occasional pin thromeh a comple of them anchors them in the midile. This anchors four house one way. It can lie anchored the other wity as follows: Let your floor timber which lies along norrest the wall be phaced close to the wall, and bore slanting holes in the side of these floor timbers, next to the wall, driving these wooden pins, and of comrse these pins will stick out where your wall is to be male. When the wall is made around these pins, of course this first foor timber is anchored to the wall; then your floor boards are nailed to this timber, being nailed nlso to the other timbers; and the other foor timbers on the oplosito side, fixed in like manner, of course, your whole house is bomd solilly together by only a few hours' work. It is also very well, as you build up the corners, to anchor them ly long, narrow stones crossing in various ways or lapping across these corners. These remarks will, at least, serve to put the bilder's mind on the track of adopting any such simple mode which may comehandy.
21. Chmifig, vesthaton, flealinotubes, etc.

If your walls are wile cnough, these em be casily made, by just phaing armud stiek, the siae of your propoed dhmmey, of vemilator, into your wall, and drawime it along up after you, thus Javiner a bule behind it. IWo of my chimey thes I carred up by brick, aml these are the only two poot ones lhate in my buhdines, as far us they have been tried. I carrided two insirlo walls from bothom to top, fir the sole propose of building my chimmes in this mamer; those rumb sticks employed were of varions siza, acerting to the sized the desired, hat if I were to billd arain, I should make them larger. They vary from 6 to 8 inches in diameter. My speaking-tuhes wore 2 to 3 inches, and wore also drawn up after me in the same manner.

I had occasion for two chimmeys, which I could not loeato in this inside wall, deroted to chinsmeys, mul resolved on buiteling them of wy grawel material. Agatinst this all my workmen protested, some giving one reason, "thers another, yet I overruled them all, diected wy carpenter to phace three boards, about 18
inches wide, up and down, alongside of the outside wall, and to place one of these sticks, alout 8 inches through and 6 feet long, inside this chimmey box, having a rope fastened to its upper end, and carried to the story above; and making my mnterial a littlo finer than usual, I wheeled and shoveled it into theso up and down boxes, occasionally hoisting my inside stick, and in a few minutes had carried it two-thirds of a story, when, faring if I proceeded too fast it might cave in, I suspended operations for a few hours, drawing up my stick to the top of the story, as I filled up tho lonese, in a couple of days, and this formed a perfectly smooth tumel for smoke. Leaving my outer box boards on for two or three weeks, on removing them, there my chimneys are, yet costing scarcely three dollars apiece, from bottom to top.

I assure the reader that my liest chimneys are those built in the mauner just prescribed. Where a turn is to be made, of course brick must be used to effeet that turn.

I attempter to make water-pipes in the same manner, by using water-lime in place of common lime, but have not tested any of them, and perhaps shall not, becanse they require to bo made with considerable care, yet with that caro can be made perfectly tight. My mode of procedure was, first, to mako the same hole that I would make for a chimncy, then insert a small round slick, say two or three inches in diameter, according to the sizo of the desired pipe; I would fill up the spaces caused by the different sizes of these two sticks with water-lime, sand, and stone, made thin, and occasionally turuing this inner stick around, so as to enmpact all the materials closely together.

Ventilators can casily he made by a like means, and as they can bo made so easily, it is a pity that any house should be without them. Each room should have its ventilator, and that ven tilator should open at both the bottom and top of the room, 50 as to carry of any bad air which may settle at the bottom, or riso to the top. Of course, in finishing off, these ventilators should have their registers, so that their action may be under control, and when enrried to tia top of the house they enn he opened just maler the eaves, between the rafters, and thus the had air cast out of the huilding. Strictly speaking, no two rooms should open into the same ventilator, bocauso this will allow sounds to pass
 are so candy hate that we med hardly troblhe comelves to cent wmize their maner. If for larer, the wo botes will somewhat woblen gour wall, yet this pinin is tow insignificant to be noticed. hocatre the walls will he abumbatly strong, if the ventilators are 1f proper size.

Areaking-tubes should generally open into elosets.

20. OUTSIVF AND INGIDE FINISH.

These ontside walls are eompleted when the ontside and inside
 montar, such as is ued for phavering intile walls, and put on in every respeet just as you would put on the seratoh-coat of an inside wall, spead right on to this rusth wall, male as alrealy

 pupare wh lowesing wit ant on the surface, tomake it resemble "ranite. 'The phinophy of irm lilhers and salt is this. Tho salf curroles the irom, athl cames his oxide to mase out in drops, which dry on the sumbe of the mortar, so as exactly to resemble,
 This outside e:m he lininhed to mesomble granite, mable, plan or cheded, areorting th the faney of the owner and artint, and howket oft, by makitus a romport of lime aml white somd, and pht where yon wonh hane tia howks. My present opinion is, that the very hest thone of thinhing is simjly to put on ome erot of mortar, subl as is usin for the imsile plasterimer, but take pains amd lay it on smmolly ame aremly. perhaps using a sfraight cige,

 samd, to give it homy, cha it is liahbe to pred or thake off. 'This ham limah shmal tee made by firt rumbing off lime amd mixing
 then, just as it is abont whe fint om, mix in slacor, or plastor of Thatis ralcined, as in hard fini-hing, ami while puting it on, work it murh and smoothly, win the tronel. lint please observe this is not wholly experimented, but is in part suggestive.

I recommend the hard finish, becanse it serves to turn water, and will thus kecp much of the dampuess out of the walls; it can also be painted, and this will eflectually prevent any moisture from passing through the walls into the house. It will also look better, at least from a distance, than any darker color, and a coat of raw oil will render it perfectly white, lecause that oil will snon be bleached liy the weather, besides serving the purpose of turning rain. Also, any stain which may strike the outside of the house is effiectally turned and roms off.

The enst of this kind of finishing is equal only to that of common phaster, afier the lathing is done, provided, of course, you have put up your walls straipht. Of this plactering, from 60 to 80 spuare gards can be put on in a day, and as many more of hard finish in another day, so that your outside finish can be put on in eomection with this kind of building cheaper, probably, than with any other. Suppose, then, your house is 30 feet square, or 20 hy 40-senr first story 9 or 10 fect, yrur secend 8 , and jour third 3 or 4-you have $2 x=1$) mare yard- to plaster, and that is all. A grond smart masom can do this in alout fome days, at a roct of lather of some ten or twolve dollars, and the hard fini-h about as much more in adlition. Suppese the whole outside finish should cost S.jo, pminting includerl, pray, is not this very chap; and your hoose thus fimished will lom splembidy, and is casily kept so, hecause any maks of soiling are eavily wathed off. Suppose you were to finish it with clap-barels, it will reguire some $\mathbf{2 , 5 0 0}$ fret, at least, and at a const of from $\$ 2.5$ to 835 per thousandmore hy considerable than the entire cost of finish, by our method. Then these elap hoards have to be planed, and put up, and the sealibling fir your mason will cost no more than for your claplwarder. Then, these claphoards must lie painted, with two or three ronts of oil and white leall, and this painting renewed every few years. Walls can bo built and phastered, hard finished and painted outside, chaper than you can merely clap. ${ }^{\text {bourd }}$ the sane surfice. If your mason slould want to take his finishing by the joh, be will make it cost you domble or treble the rates here apecified, hut every plasterer knows that 70 yards of plastering is only an ordinary day's work, and ahout as much more for hard finish.

One other form of outside finish has been tried with success by

Mr. Thomton, lumber dealer, in Pawtueket, J. I., nud is as fullows. He simply mixed sume common coal dust with his mortar, just enough to turn it a grayish color, and the little specks of coal which come to the surface shine and spatile in the sun like dianomd, giving to his ontside finish a beautiful and rich appeamace. All he did, wat simply to mingle this coal dust, or sereconiuss, with his mortar. But the common mode of phastering, without coloring, a little way ofi looks very well, at least, better for an ordinary house, than any other which a man of linited means ran aflord. Still, touching this matter, let every man inguire and julpe for himself. Of course, it might seem, at first sighit, that this plasterine would peol oll; so it will, if spread upon leth. But mark this dilkeme. Plaster never atheres to wood; the entire alhesion, remember, of phatering, when put upon lath, is tho diach upen the back side of the lath. Of course, fiosts heavo this phaster, aml lueak these elinehes. Not so with ours, and for this reason. The mortar is not separated from the main material ley wool. Hetere water com incibate itself between the phater and wool, not mily locisening the phaster from the wool, but swedting the worl so as to crack and hewe of the phaster ly exfankin; and whol the wood shrinks ly drying, it leaves the P $^{\text {lastar }}$ loose, wheres ours, ineorporating itself in the solid material of the wall, boromes one with that watl, ju-t as much as if it had been put on at the time the wall was going ur, and thoso
 very lwe climelnes in the world. In Mr. 'Thomen's house, there oceras a slight perling, but, oborve, it is not between the plaster and the wall, hut betwen the lmo roats of plastre, or, between the seratelecoat and outer coat, and henee, I recommend that but a singte coat be pat on, that that coat le rembered as thin as it will weil work, and pressed thoromehly into all the litte holes in tho wath, that is, worked well with the trowel when spread on, and smomh the first time. It will check some in drying, hat the hard finish recommended will stop these checks in a single application.

It showhld be adiled, that my mason mingled a little water-limo with his mortar, as he put it on, the utility of which I rather doubt. Still, its cost was a mero trille, and it possibly may bo of use in turning dampness.

In our cities thoy are in the halit of finishing their best brick houses with plaster or another compound, altogether forming what they call mastic-cement, the price of which is $\$ 100$ per square yard. This is considered cheaper than an ordinary briek houso made of first-rate brick. That is, nfer they, have bought their ordinary brick, put up their wall, paid the mason for laying them, and tender for making and carrying mortar, they then add this dollar per stuare yard for their ontside finish, and yet consider their walls cheaper than if made of firstrate brick, laid in tho Flemish boud style. Then how much cheaper this gravel-wall, for their mastic finish will adhere far better to this than that.

That nature has fumished better materials, if we will diseover and apply them, than hoards and paint, is apparent; for, besides their enpensiveness, they must, as the world fills up, become too scarce to supply the demand. Our plan is peculiarly alapted to a plaster finish, and that such cheap and durable finishes can ho mide, is a mater not of inference but of expemment. The Siate Ilouse at New liaven, Come, is plastered outside, and has withstood the action of frost and rain over thinty years, and without the expense of frequent repainting. So well has this plaster fui-h recommended itself partically in Now IIaren, that all their first-chass honses are now covercd with it. The fleasinility of an outsite phaster finish is thus placel, by experiment, beyond a doubt.
'The following recipes, elipect from the papers, are given. as recrived, without emborsement, lut iwt without consideralide confidence in their durability and applicability to the gravel wall.
"Tho Pittshurgh ('hronicle says nu indivilual has n mode of manufneturiner marlile which is pronomed superior to any other arlificial stene or marhle in use, aud will supersele the use of lime mortar in the various processes of plastering, and will be extrusively used for stuceo work, musitic, statuary, mante-pieces, tathe slats, atuospheric and hyiranlic cement, roofing of houses, and paving of strcets, cto. It will ant or inarilen In six hours, when applied in plastering houses. It will resist the netion of ntmoupheric heat, damp, frost, etc., and is susceptible of a high polinh, and ean be manufactured at a cost little exceeding ordinary lime mortar."
"Much is said of the brilliant stucco whitewnsh on the cast of the Pres-

[^0]

 whiting and a pesum of chean ghan, which has been previon-ly dinolved ly first wothing it well, and han hanotho it over astow fire, in a sumall ketto, wihin a larege one tillot with willer. Ad five ghllote of hot water
 the dirt. It shemblar put an quite het; for this purpuee it can be kept

 mplied.
" Wrehere more or lins emall may be weot, acerting to the neatness of
 ine of the kind lhat will coblare with it, rither for antsile or inside walls.

 mondeate quatifies mone a slate color. wers suthable far the outside of

 the coboring matior used. It is difioult to make a mole, beanse the tartes

 makrat crack amel foel. N:ich wall, have ben bally smokel, ame you
 lhansh a bige into the wator yon use, he fore it is stirest into the wholo mixture. If a lanerquolity than five gations should be wanted, the sane

Mayy renkers will me ionht remember that splemdid mansion it: Bram Stren, Jhitamplat, near Chesthut, whinh is plastered and colored Jullow, and has withitoud the weather these ten yan, 10 my howlong, polahly lomer.
 wall, or fured and lathen. If the buhber is alle, the latter method is unduubtedy the beit, and well worthy of the extra
cost, wherever it cim be allorded, becauso it renders the house dryer, warmer, more even of temperature, and every why bettor, on account of that dead air between the wall and the plaster. A part of my own house I have thus furred and lathed, but the two upper stories I have not, partly because n quarter of the surface is occupied ly closets, and another quarter by windows. And yet, I should recommend, to those who have means, the latter method, but I have, as yet, seen no marks or signs of dampurss in my closets, or on my walls, nor do I believe I shall ever be troubled with either. Still, I cme only say what has been, thus far, und leave the future to the future. Unless your walls are carried up middling straight, it will also cost you more to finish on them, than on lath, lecause, in some places, the mortar will have to go on thicker, and in others, thinner, but a poor man could better live without its being lathed and plastered inside, than to live in a rented house. In fact, by this mode of building, a man may accommorlate himself to present circumatances, and finish afterward, as he becomes nible.

23. clat and store wail.

Thus far, I have spoken experimentally. Respecting the solidity of the gravel and lime wails, not one particle of doubt remains. 1, however, suggest nother plan, which, if I were in a country where elay was handy and sand not, I should adopt. I should temper clay, just as I would to mako brick, and then mingle in stoncs, large and small, with this clay, or else lay them in, as tho chay is shoveled into the wall, and put up a house of clay and stones, instead of lime and stones; any other hard substance, such as deseribed, will answer just as gool a purpose. I have tried a small piece of wall in this way, cnough to satisfy myself that it will answer every purpose of solility. Ilouses have often been made of unburned clay, but what is the use in separating this clay into blocke, and then uniting them by mortar? Why not throw your clay into these boxes or cribs, as above descrined, ${ }^{, 0}$ and make the whole in one solid clay mass? And if clay alone will staud, surely clay plentifully mixed with large and small stones will stand better. The greatest objection here, appertains to the
handling of this clay, becauso it is so stieky. Yet, this very property of tenacity is the binding property of the wall. To have just chay enough to fill all in between these stones, and bind them together, and to have stones enough coming out to the edge of the wall for the outside mortar coat to alhere to, would, it seems to me, make a cheap, and every way exeellent wall ; at least, sufficiently solid for n!l pratical purposes of support. At all events, I shall make an extemed trial of this material, in buidding fences and out-houses. By this method, even the cost of lime is saved, so that, supposing a man has to build on a clay foumdation, all he has to do is duly to wet and temper his clay, and shovel it right into his walls. But since a fout of stones can bo handled much more easily than a foot of clay, and serves a better purpose, from one-half to two-thirds of his wall should be composed of large and small stones. Nor shouid I be afraid to carry up a twa, or even three story house of this material.

Fences can also he built of both theso materials, either clay and stones, or sand, lime, and stones, yet, not having had expetience in this line, I do not speak positively, but think a very thin fence, saly eighteen inches at bottom, nud tapering up to six or eight inches on top, would answer every purpose, and believe a wall can be built in this way about as cheap as a stome wall. At all events, I shall soon put this surgestion into practice.

24. cost of the grayfl-wall.

That this kind of wall costs far less than either hrick or wood, is perfertly obvions at one ghace. The price of brick varies in various places, but suppose it to be s. per 1000; how great a saving occurs in material. It takes only from half to a quater as much lime to build this wall as to lay up the same sized briek wall. A cart load of stone will go just as far as a cart load of brick, and answers just as goocl a purpose. The stones have to be carted, but do not also your brick? And brick must be carted from one to several miles, whereas, stones can generally bo picked up all around your dwelling, so that buiding your house will very likely serve to elear your farm of these encumbrances. Supposing, then, a man has a stony field to clear con-
tiguous to his building spot; after throwing the stones into his cart, which he would have to do in elearing his land, ho can now cart them to his building spot, about as well as to any other place of deposit, so that his stones are brought to their places with litthe additional cost, and these stones form more than half the material for the wall, and a sand or gravel bank will doultess be more contiguous than a brick-yard, and in a majority of casos, the materials cau be duy right from the cellar, or obtained within a few rods of your building site. But as any expense of carting will vary with the locality, but be much less by this than tho brick wall, we will leave this out of our estimate altogether. It can, at least, be done in winter, on snow, and thus much moro advantage taken, than in building with brick. But, your mate; rials on the spot, clear off your top soil as far down ns your gravel, then sink your wall as far into your gravel as you design it shall go; now shovel gravel from your cellar right into your mortar-heds, and thence to your wall, sc that in digging your cellar you actually make your wall. Nor is it much more trouble to move your material into the wall, than cast it ontside nom carting it away. We have alrealy estimated abont the ahoment of lime requisite, say from $\$ 15$ to $\$ 20$, aceording to the size of your building. In the case of my own house, $\$ 20$ worth of line put up a building 2.06 fect in circumference, and 23 feet high; equal to a house 64 feet square, and three stories high, provided these stories wero only 10,8 , and 5 feet high; yet I should alviso the use of $\$ 30$ instead of $\$ 20$ worth, for the same sized walls, and even more, where higher; but under any circumstances, from $\$ 20$ to $\$: 5$ worth of lime should put up a house 30 feet square and two stories and a half high. And now, please ohserve, this is all the materiak you want for your entire wall, saving some three or four dollars' worth of scantling fir guide standards, sills, frames for doors and wiudows, hoards for the top of the wall, etd. What boards I used on my wall ornt about $\$ 3$ per story, and my standards about two more. Your entiro material will then cost you, for this gravel-wall, from $\$ 20$ to $\$ 30$, whereas, brick alone would cost $\$ 200$ or $\$ 300$. Now, reader, do you or do you not see an immense difference in cost of material ; a diference which of itself should entitle this modo of building to universal consid-
eration. Your pile of stomes, requisite for the building, will cost just the drawing, whereas a like pile of brick to build the samo with, will cost several hundred dollars! To build one square foot with brick wall takes abont twenty. A house 23 feet high and $3:$ feet square, will reguire ahout 3,000 square feet, or, making allowance for loreakare and wasteage, some $\mathbf{6 0 , 0 0 0}$ bricks, which, at $\$ 5$ per thousand, would cost $\$ 300$. Now, these brick have to be laid up, and this will cost, at $\$ 3$ per thousand, $\$ 180$ more; add $\$ 30$ or $\$ 10$ for lime, or $\$ 520$ in all. It cost me 44 days' work, of common $\$ 12$ per month hauds, to put up my wall 11 feet 2 inches high, and 256 feet in circumference. It took six days and a half of my carpenter's lator, at $\$ 100$ per day, which, adiled to the other, makes s. 550 , and two and a half diass of the mason to lay the window sills, and the arches over windows and doors, and to level ofl the wall, and put on the boards, ready for the floor timbers. My brick cost about sti 50, and the bonrls for the top of the wall, mad cantling for standards, about sion 00 more, nuld the lime cost sto; hiv fints up whe fite from sito. The rubbe stomes used were quarriod in disesing the cellar, so as, properly speaking, not to he reckonel into the cost of the wall. But suppose they were, 1 should think from three to five dollars would have done the quarying, and as much more would have hated the sand used two and a half miles. In footing up the bill for my last story lint one, I could reckon only aboat $\underset{\text { sion }}{ }$, and, surprieed at this result, concluded I must have made some cardinal omission, and hence, charged my carpenter, when I came to the uppre slory, to reckon every item of expense in his department and in mine. We hegan our work Frilay before noon, and finished it the next week Saturilay, at nine o'elock. I then summoned all hands; footed up lahor and time, examined the materials used, and fomd the following result:

Cominon labor, 44 days, at \$12 per month.........	$\underline{3} 200$	$\left\{\begin{array}{r}1,001 \text { brick for window sills } \\ \text { and nrehes............... }\end{array}\right.$	650
Carpenter work...........	700	Boarel for hands	1200
Manem laying window sills, nrehes, and leveling wall,	260	Sand, quarrying stones, nails, horse to haul up,	
4 cente per buqhel	1000	use of boards for troughs,	
Lumber for standarils and			1500
top of wall.	600	Total..	7900

And one-niuth of even this stnall sum was for brick and laying. True, I had my mortar-beds all made, tackle rigged, and all things ready for working; but it need not take many days' work to get ready. The outside finish can be put on very cheaply, or made more expensive, ns the owner chooses. Experience had taught me to handle the stuff economically, but my candid opinion is, that $\$ 100$ will put up and finish off the outside walls of a house 30 fect square, give it a good coat of plastor and hard fimish; that is, would do all which belongs to the wall itself, and leave that wall every way better than a brick wall which would cost $\$ 600$. Of course, this estimate does not reckon windows and doors, which would have to be added to a brick house as much ns to this, and cost just the same in that as this. Goodrich estimated his walls as four times cheaper than wood, and six times chenper than brick, and his estimates and mine come to about the same results.

One of my neighhors, H. J. Sherwood, of Fishkill Hook, ventured to build a carringe-house on this plan. Ilis house is 24 by 26, about 10 feet high, and cost ahout 7 days' work of Irishmen, besides some little assistance he himself rendered, and about $\$ 6$ worth of lime. JIe expressed himself as perfectly delighted with this mode of luilding, in which the work and all the plan so far exceeded what he anticipated, though he had seen mine and heard me describe it, as to become as enchanting as a novel, and so delighted him as to interfere with his sleep at night. Mr. Thornton, before mentioned, residing in Prwtucket, R. I., thinks he saved himself several hundred dollars by adopting this inethod, and all who have tried it bear a like testimony. And now, reader, having done my duty, by telling the truth, as nearly as I know it, I leave you to either proceed in the old horse.jng mode of building, or adopt this new railroad style, as you in your sovercign plensure may choose to decide. Of course, the other portions of the house, such ns doors, windows, floors, foor timbers, etc., will cost as much by this plan as any other. Our estimates and descriptions have reference simply to the outside walls.

Now foot up the cost of frame and walls in accordance with the prices of materials and labor in your various sections, and compare it with the cost of our wall for a house of the same shape and

54

dimensions-remembering that our estimate is for a house two and a halr storics high-and then choose the new, chenper, and better style, or tho old, costly, and poorer way.

25. the quahity of this aravel.wall.

Is it as good as a frame-house? Far better, every way. Let us cramine its advantages. Air rushes in freely through the open crevices of the siding, and, of course, through every crack in the plastering and fooring, and therefore troubles you to keep warm in cold weather, cren with considerable fire; and esperially your fert, in conserpuence of the air eoming up through the floors. This our wall prevents. Plastered outside and in , it, of course, exclutes the air from getling aceess under the floor, or to the inner coat of phatering, leaving only windows and doors for its ingress. Now, a wam house is quite a desideratum, hoth as saviug fuel-gnite an expensive thing-and as promotive of comfort. Λ bouse built in this way not conly retains the heat, but preserves an eves temperature, and thas escapes the one-minute-warm-and-hnemext-cold, incident to all woolen buildinge.

The fact in recratel to my own homse is, that water standing all winter in one of the rooms in which there was no fire, nor any below it, has not frozen; aud I will prove practically, to all who will give me an opportunity, that the house is thus easily made and kept watm. I speak not of doors and windows, which are the same in the new as old style, but of floors and walls. I would not, on any accomit, exchamge my walls even for brick or filled in walls; becaluse the fermer retain monsture, which these never do; and the latter allow more or less air to pass in around the siding and next the phathring, whereas these shut up every possible avenue agranst its entrance, from top to botom, with dotmen noons. All cracks in lath and plastering the wind finds and pours theough; but if a cack oceurs in my inside wall-and I have none, execpt such as are caused by that settling alrealy alluled to, and the masem should have known better than to have begina wall on so poor an arch-no wind can get ro it, and therefore none through it; for it can not press against tho inside coat of plaster the whole length and breadth of wall, as by the old
method, nor come in around the wash-boards, for it can not get to them, but must stay out. I consider my house worth much more, just on this account, than if built in the old way.

You sce, then, how and why it is that this kind of woll is not half as costly ns the present kinds, and yct is twice or thrice as good, in every respect.

This plan also allows you to build your floors of hemlock. That timber is not used for this purpose, becauso it enn not bo grooved and matched, which is necessary to keep the winn out. But ly the proposed method, no wind can get access under the floor, and, of course, no grooves and joints are necessary to keep it from coming up through it.

26. VERMIN EXCLUDED FROM GRAVFL-WALLB.

Moreover, the wood methorl allows rats and anice free rango throughout the house, and furnishes a complete harhor for them. Hut our phan shats them out eflietually. They can not climh up and harthor between siding and plastering, nor get up between eriling and fows; for all is solin. They ran be effectually prevented from entering while billing. by just makine one single phace around your chimney mouse-tight. You eflectunly, by this kind of wall, exclude these execedingly nnnoying and destructive customers from all parts of the house, hy filling up all aceess and all harbors ; and is not this worth $\$ 1,000$? Many would give twice as much to be rid of these torments.

Special attentiou is invited to the very great superiority of this plat, not in one or two triffing respects, lint in every reapect. Any one of these advantages is amply sufficient to secure its universal adoption, while all combined render it incomparably better than any other-it having the alvantages of all, no disadvantages, nod many excellences unknown to all others. In short, it is nature's style of architecture. And its allowing the eight or twelve-sided plan, soon to be shown to gain onefifth by its rorm alone, caps the climax of its value.

SEC'CION III.

defects in tile usual silapes of houses.

Since some shaped honses contain twico and even thrice as much room as others, compared with their amount of wall, and that muel lietter adapted to houselold purposes, the best form for n honse beromes n matter of prime importance-even a goveruing comalition-and repuires julicious investigation. Jow cau I iucluso the most spare, so shapel that it can be partitioned of into rooms best ndapted to my requisitions, should be your great inquiry. This brings up the defects of most houses.
27. high and low houses.

Low houses cost much more, compared with their room, than high ones. Fonmlation and roof cust the same for a one, as for a four-story house, yet the latter contains four times as much room, or four homses in one; and all for less than double the expense-a saving of alout onc-half.
" lint I want all my romen on one floon, for I don't like this rumning up and down stairs-lhis living in the garret and cooking down cellar!" exclaims some weakly filget, as horritied at the sight of stairs as a mad deg at that of water. Then build as you please, hut for one, I dislike to sleep on the first floor, because hore or less dampness will aseend, causing colds, ferers, and premature drath. Nor do I like to sleep directly under the woof, because so insumferably hot eveniug as to induce one to throw off all the bed-elothes on retiring, yet rapilly cooling toward moming, by dew or rain, so as to cause chills and colds, but
decidedly prefer an intermediate story, so as to escape both these evils, and secure dryness, and as even a temperature as possible. To human health and happiness, sound slecp is second in importance only to air and food, so that good sleeping apartments are more important than even a good parlor ; and these can not be had in a house less than two and a half or three stories. It is especially bad to sleep right over an unventilated cellar; for the poisonous gases generated by stale or decaying vegetables are both noxious and insidious.

Ventilation," too, is as important in a house as breath to human life and strength. Yet no one-story house can be well ventilated; much less if located low, whereas a high house naturally cennses the air to drav $u p$ from bottom to top, because the atmosphere is lighter above than below, which naturally not only facilitates and increases all breezes, but even creates a draft when there is no breeze; on the principle that a high chimney promotes draft. And the higher the house the cooler and more complete this ventilation in summer, and the warmer in winter. Hot air naturally ascends, which cools the house in summer, and warms it in winter, whereas, in a low house, it escapes out of doors, instead of into upper rooms; which renders heating it much more expensive.

And are not the rooms even more accessible in a high than low house? Suppose you require the room of a three-story house 30 by 40 , is it not easier to ascend 10 feet than go from 40 to 50 on a level, and to ascend 18 feet than walk ($\mathbf{6} 0$ to 100 ?

Fig. 1.

Thus, how much more difficult is it to ascend two flights of stairs than to walk from a to b, which is over 100 feet on a scalo of $\mathbf{1 6}$ feet to the inch. And then see how much more room is 3*
consumed by the entry than if you had merely a stairway. To accommodate a large family takes a good many rooms, which, if all en one story, would repuire an immense roof and foumelation, and must be every way twhward and inconvenient, besides looking so low. And why is not a hed-room as handy on the second story as first? Is going up stairs twice a day-once, to preparo the bed, and ngain to occupy it-or even more, so very irksome? Even to cook a story below where you eat is not so bad, if a dumb water is provided to trimsport food and dishes back and forth. Yet a light, airy basement is no inferior eating place. Buth to look wrill proportioned and to be convenient, houses require to be nbout two-thirds as high as wide. Small houses should be at least a story and a half, and large ones two or three . storics, according to size.

28. LAHGE AND SALALL HOUGES.

A small homes, compared with its room, costs much more than n large one, and is much less comfortable, because, first, it regnires more wall to inchise it, as compared with its number of spuare fect. Thus, a mile below St. Charles, Ill., is a one-story stome house, ten fet situare, and its walls one foot thick. Of course, it is 8 fiet sumare inside, and comtans 64 stuare feet to 40 feet of ontside wall, or alwut one and a third feet of wall to every spuare frot of rem. Now, n house 20 feet square inside gives 100 sfuare frot of rom to 80 feet of wall, or 5 fect of room to 1 feot of wall, which is more tham 350 per cent. more inside room, compared with its outside wall, than the 10 feet house. Lut a 40 fect hase gives 1,600 sture feet to $\mathbf{l d o}$ feet of wall, or 10 feet of inside room to every foot of outside wall. Olserve, realer, some nine times more room in the large holse, comprared with its ontside wall, than in the small one! Verily, are not these small houses more expensive, compared with what room they yich, than one would suppose? One 80 fiet square, gives 0,400 spluare feet for $8: 20$ fict of wall, or 20 feet of inside room to one foot of wall, which is fiftern times more room in the large than small house, compared with its wall. It would, then, take one hundied of these 10 feet houses to give as much room
as is given in one 80 feet house.
To present this in a tabular form, omitting thickness of walls:

Bized ITnuse.	Outside Wall	Equare Feet.		
10 feet takes	40 fect,	gives	100	ide
20 "	80 "	${ }^{\prime}$	400	6
40 *	160 '	*	1,600	${ }^{6}$
80	320 -	\bullet	6,400	*

Now reduce these by division to their lowost denominations equally by cutting off their ciphers, and we have the following proportions:

1	2	4	8 sized house.
1	2	4	16 outsile wall.
1	4	16	61 inside room.

Observo the law here involved. While the increase of wall is 1. 2. 4. 8. that of capacity is foce times greater, or 1.4.10.64. By increasing the wall only from 1 to 8 , you increase the rom from 1 to 64. That is, the wall of the 10 fect square house is bixty-four times more expensive, for its room, than one of 80 feet; or deducting thickness of wall from all, above ninery times. In other words, ninety dollars go no farther in making the outside walls of a 10 feet square house, than one dollar goes in making one 80 feet square. Of course, this does not reckon the partitioning of the large house, yet inside partitions are far less expensive than outside walls.

But see with what force this law applies to large and small rooms. Λ bedroom, $\mathbf{7}$ by 0 , takes 32 feet of wall, yet gives only 63 feet of room; and if only $\mathbf{7}$ feet ceilings, 441 cubic feet of air; whereas, one 20 feet square takes 80 fect of wall, and gives 400 squaro fect of room, or over six times more room in proportion to its wall, or six rooms in one; and if 13 feet high, gives 5,200 culic feet of breathing-timber, or almost twelve to one. Now, what will be the alditional cost of this large room over the small one. It costs no more for doors and windows, for one of each will serve the large just as well as the small one; and only two and a half times more studding, lathing, base-boards, and plastering, and not two and a half times as much labor; for it takes no more time to lay oul, or mark off, the large than the small
ronm, or to strike 20 fect lines than 7 or 9 , no more trouble to erect the scoly, dingls fur pacing them, or for lathing or plastering, and not much more time, when once at it, to stwl, or Jath, or plaster. Of course gou have six times as much floor and ceiling, yet it takes much less lahor in proportion, and wastes much less stull to lay a large flow than a small one.

As to the height, pray how much mere does it cost to make a high that low room? Studding comes never less than 12 and usually 13 fect. Hence, if your walls are only 7 or 8 fect high, you must cut off 5 or 6 feet of each stul, to be resird, as to splice costs more than new. It costs no more to place a long stad than a short one; and hence a high room costs no more for dours, windows, fhors, studdins, or base-boards than a bow one, and only more for lath, $\mathrm{I}^{\text {limationg, }}$, and mortar. Then, pray, how much for that? Λ room 7 biy 9 is 11 yards round. Now since, as just seen, it costs no more fire sturls or placing them, or for doors, wimlows, flewrs, eeiling (hy which is meant over-head ceiling), or base-boarts, the only allitional expense of a room 13 fiet high over one 7 , is the luth med plestering. Lath, at \$1 75 per thousand, ensts $2 f$ cents per sumare yard, and pulting on and phatering alout 5, 6, or 7 more, say outside at 10 cents in all. Now a room 7 ly 9,13 feel high, has 22 yards moro of 1^{1} lastering on its sides than one 7 fret hirgh, and therefore at 10 cents per square yard, costs only $\$ 220$ more. A room 20 fect scquare and
 Wring than oue 7 feet, and of course costs, at 10 cents per yard, S5 40, the interent on which for one year is only :3s cents, or only ahout ouc mill per night, yet containa almosf tweive times as much of life's great staphe, ank. The stumbing of the largo room, at $\$ 1000$ per 1,000 feet, will cost about $\$ \$ 00$, and for the small one about $8: 325$, diflerenee, $8 t 75$; base-hoards for large rowm, 8150 , stuall room, 65 cemts, dillerence, 85 cemts;
 ing and plastering large room, s.5 40 , small room, 32 cents, difference, s.5 08. The dilimence of cost in the foor is about proportionate to the size of rom, exerpt that one can lay a large flowe much faster and at less waste of stuff than a simall one. The large floor may possibly cos: the most by $\$ 1000$. The
doors and windows will be about the same, only a little largerthe same number of picces, only longer, for frames, casings, etc., and worth about the same. The dillerence would not probally exceed a dollar, or two, at most. A room 20 by 20 , and 13 feet high, might possibly cost more than one 7 by 0 , and 7 feet high, from $\$ 3000$ to $\$ 3500$, which, at 7 per cent. interest, is only ahout one-half of a penny per night; yet the small one contains only 441 feet of air, while the largo one contains 5,200 ! or almost twelve times as much, and all for only half a penny per night rent, or one-fourth the price of a cigar! Now for which, reader, prefer you to lay out your carnings, for one-fourth of a cigar per day, and 440 feet of breathing-timber at night, or for 5,200 feet of this precious life-giving element without the cigar? How can you spend a pemmy per day so ns to obtain any thing like as much real goorl, and even sumptuous luxury, as fir this large sleeping.room. In your smali room you are obliged either to lweathe your air over and over ngain for the twentieth timo every night, or sleep with the wind blowing directly on you. And if two occupy the same hed, how doubly bnd in the rmall, and good in the large one. Contrast your feelings in the morning. Waking up in the small room, you feel dull, stupid, gloomy, oppressed, yawny, lax, and all unstrung in holly and mind, hecanse ulnost stifled for want of breath; in the large one, fresh, lively, strong, bright, happy, and healthy. And how much nwre can you enjoy and areomplish during the day! Especially during a lifetime! In the speut air of your small room you discharge the poisonous carbonic acid gas, generated by the life process, lut slowly, or, rather, re-inhale, about as fast ns you discharge it, and this will soon leave your system londed down with disisise, and cause a fit of siekness, which will cost more for doctor's bills and loss of time than several such rooms. If poor, this is the very reasm why you should sleep in large rooms, lest jou get sick, especially since it need cost only half a pemy per night. 'Ihe poorer you are, the better you ean afford to pay this largeroom life and health insurnnes of some two dollars per year.

The same general principles apply to large and small sittingrooms, and particularly to warming them. A small room heats up quickly and cools off rapidly, and this perpetual change of
temperature is as detrimental as unconfortable. Who has not noticed, on first entering a small room, containing several persons, how terribly repulsive and suffecating its atmosphere, rendered so by so many breaths in so small a room. To retain a comfortable, even temperature in a small room is not possible. To occupy them is wicked, because destructive of health and life, and therefore suicidul. And how much more so in sickness?

Another advantage of a large over n sinall house is, that outside wall costs far more in proportion than inside, and still amother, that having less surfice, it receives and evacuates less heat and receives less cold. Thus, as a house 15 by 25 has only about four square fect per one of surface, whereas one 40 feet square has 10. Of course the former in a very hot day becomes twice and a half times as hut, and in very cold weather evacuates fire-heat, and receives out-of-loor coll, twice and a half times faster than the large one. In a large house the sum shines on only a smatl part of any one room at a time, the other walls of the room being seremed from the sun's rays liy neljoining rooms. A like principle applies to end, and to ono and five-story honses.

29). NUMHER OF KOOMS DESIRADLE.

The poor man, who is obliged to cut his garment according to his cloth, most of en eontent himself with small rooms and fow of them, but those who have the me:ms of bilding a mansion to their liking, will do well to ind, inire whether money maly not be well spent in making a mueh larger nember of rooms than is now considered desirahle. Most mell, even of wealth, who favish thonsands on ornament, ant would spend other thonsands if they saw any place fir profitalle invectment, neverthofess content theonselves with hitchem, paroms, and bedroons. Yet are there no other tamily muds almost cupally repuisite? Thus, sewing is an inpmotant fanily cod. Would it not be well to fit up ono room expresely for thic class cif work, containing all necessary fixtures, with closets for drygoods, ctc. This would save the litter and clutter of this work in other rooms, and materially ficilitate its accomplishment.

Especially is it important that every child, and, indeed, perma
nent members of every family, should have a separate roon, exclusively to himself or herself, Where two or three children oceupy the same room, neither feel their personal responsibility to keep it in order, and hence grow up habituated to slatternly disurder, whereas, if each had a room "all alone to themselves," they would be emulous to keep it in perfect order, would feel personally responsible for its appramine, would feel ashamed of its disarrangement, would often find themselves alone for writing or meditation, but especially will feel a perfect satisfuction of the home element; ${ }^{2}$ whereas, otherwise, this powerful faculty is of necessity left in a craving, home-sick state, and this throws the entire inind also into this same home-sick, dissatisfied, cross-grained state, which irritates temper and rufles amiableness. I'robably few readers, never having experienced the luxury, whilo young, of this "own room" fecling, are at all prepared to duly estimate this point; nor would the writer, but for some observations which would prohalily have eseaped those not habituated to the analysis of character-such as tracing discontent to its real cause. Think a moment. Suppose you, an adult, to oceupy a house in common with another, with no part of it exclusively your own. How infinitely rather occupy inferior rooms all your oron. Now this "own" feeling appertains as much to chillen and their home as to. adults, though less in degree. This indispensable human need this plan supplies.

Again, chillren, especially from twelve to twenty, lose much time for study, writing, musing, and selfimprovement, bectuso obliged to be with others, or, at Irast, liable to interruptions, and hence yield their entire time to mental dissipation. Aud huw much better every body can study, think, do business, any thing, in their oren pluce, than in a place not theirs. Header, pleaso messme the value of this principhe. Esperially, try it hy giving a child his own room, and then taking it away.

Satisfying this homeferling will also contribute immeasurably to their love of the old homestead. Without it, it is ouly their futher's home, not theirs. Then how can they become personally interested in, or attached to, it? But, by giving them their own apartment, they themselvas become personally identified with it, and hence love to adorn and perfect all parts.

To daughters this is douhly intportant, as teaching them bow to keep house. besides being taught practically to have a place for their own thinge, and to kerp things in their place, having their own burean and closets arranged after their own fashion, which no one dares to molect, they are tanght practically how to receive and entertain company. Visitors in the partor are not thrir company, so that to treat them becomingly is not their special duty. Otherwise, when their visitors cross their threshoh, they then put on the lady and take the lead, and hecome elothed with the disuities of mistress of ceremonies. And how much more gracefully, lady-like, and queenly do they conduct them at home than in mother's parlor!
leerhaps this company will stay to tea. Here is now a most inspiring inemtive to her to cultivate the housekeoping arts and acconplishment:. l'erhaps father and mother will be invited out to tea up into her room to tavte her cakes and dainties, and this stimulates houselkecping ambition to its highest pitch. In ways inmmerable like these will this "own room" plan promote the dewelopment of chiduren.

Slecping by themselves is also a first-rate plan, loth for health, and to prevent their imbining any thing wrong from other chitdren; nor are their slumbers disturbed by a restless bed-fellow. Nor do they kerpe sach other awake nights, or in bed mornings, by tilling. la fint, ming most desirable ends does this plan subeervo-at least emomel to require its adoption by every parent who can allind it.

A greater momber of spare roms for company than is generally found, is desirahle. Hospitality is a heavenly virtue. It promotes interchinge of thoughts, a phacurable flow of feeling, and thousamts of like ents; and hoorgh often mate, by false approbativencse, somewhat more costly than necessary, yet it in reality med eost lithe. To make a great parade and show does indeed cost, yet this is not hompitality, is not reen polite, for this show makes the vicifor foel that he is putting his host to extra trouble, and this mars the visit; whereas mere ordinary fare, only one extra plate, makes all parties frec to enjery the visit, without rendering it so soon tiresome. I never want to stay where they make a fuss for me. Make me "our folks," or l'm off.

Another end secured by a goodly number of rooms, is order. With few places to put things, one thing must be displaced to make room for another, and this for still another, which renders order alsolutely impossible. But all, even the poor, have more things than places to put them, which necessarily produces disorder.

Merchants find the classification of their goods indispensable, or separate rooms for different classes of things. And why not this principle equally requisite in a complete house? Different cellars for specific articles, specilic rooms for fruits, and so through ont earh important end its owner may serk to oltain. But with this statement of the thought, we leave each reader to apply the detials as repuired by his own individual tastes nud wants. My own house has sixty romms, but not one too many.

To large houses women often olject that it takes such a world of toil to keep a large honse well. I say the reverse. It talies twice the work to keep a smiall houso well ns is required for a bage one. A small bouse and few rooms must he all clutter, confusion, and helter-skelter; lut in a large house things once luated can remain. A room not used requires no cleaning, exeept an occasional cobweb brushed down; hor much of that, for flies, and of course spiders, are searee in dark, untenanted roons. And often the use of a room for a single week in a year will well rejay the ammal interst on its cost.

Most desirable, in every really good house, is a play-room for children, a gymnastio room for females, and a damingroom. Physiolngy urges the importance of private dancing parties, especially for sedentary fashionables nad confined operatives. Hlow many a debilitated constitution would they resuscitate! Llow many hopeless invalids, now dying by inches, wonld such rooms in our buildings restore to life, health, and happiness! How many a child save from a premature grave! Mankind aro dying off like diseased sheep, in consequence of pure enmi. They want action. How extravagantly fond of play are all children! Why? Because their growth demands, with resistless imperi, ${ }^{\boldsymbol{\prime} / s-}$ ness, muscular exercise and free inspiration. But no; if in a village or city, they must not go abruad for fear of accidents and - bad associates, nor make any noise within doors, because it dis-
turbs ma's, or aunt's, or gramy's tea-intoxicated nerves, lashed up almost to the point of derangement by the want of just such an exercise-rom. No one thing would confer as great a blessing on sedentary men, women, and children, physically, intellectually, or morally, by developing their physical, and therely their mental facultics, as an exereise and amusement room. Here they might use their lungs and race about without restraint.
30. laroe and small barns and out-houses.

A single application of this law to barns and out-buildings. One farmer builds a large do feet bam, putting corn-erib, wagonhouse, grainery, and all out-buidings under one roof. Another
 15, a eramery and store-romes 10 ly 15 , ote. The former buids

 or only 4 to 1 . 'That is, the eath money of the firmer goes ahmest foch timas further than that of the later. The relative nomout of ronfing is the same; yet in making the two there is this vast diflereme: the fomer has ote set of phates, rafters, ete, while the latter has a set for eado bilating. The latter uses short stuff, and thes cuts lumber to great disadvantawe, and has to get read, to buide four times to the fimmer one, and thin getting reenty is half the lattle. Alwat the same amome of fleming is gequired for both, hut observe, the large ham has lomger timbers, yet not haif as many. Aud then how much more hamly to do his work. For instame, the furmer drises his carniage to that part of his larn appropriated to the carriage, whanesses, and leads his lorises directly into the stall, while the latter has to take his out of dons, ofening and shating doors, perhaps getting wet or mundy, cte. How vastly more handy to have all this work done together under one roof, than to have to go from one to another, and from that to at third, and then back to the first, and so on from day to day and ycar to year! If oljected that one fire will burn out the former completely, the latter ouly in part, then be careful. Yet if near together, the dillirence is trifling.

A liko advantage is gained by building one house large enough

hong anil nalrow houstid.

to contain wood-house, wash-room, and other like oflices, now usually carricd on in separate out-buildings. But by this time the reader nust perceive the great principla involved, and can apply it for himself; and in determining how large you will build, remember that you are building for life, and can thercfore afford to make other things bend to this.

31. long and marmoty hocsea,

Besides being out of all proportion, are very inconvenient, obliging you to perform quite a journey in gaing from one cxtreme to another. Conpacterss of room is most desirable, because it faciitates the grouping of rooms around or contiguous to one another, thereby reudering the passige from room to room both short and easy, which, in a long and narrow house, is alsolutely impossible.

It also takes more wall to inclose the same number of square fect in a long and narrow than square or round shape. ${ }^{88}$ To illustrate ly diarrams.

Suppose liig. 2 is four inches long by a quarter of an inch wide, it will contain one square inch.

Fig. 2.

THE LONQ AND NARROT FORM.
Fig. 3 is two inches long by half an inch wide, and contains one square inch.

FIg. 8.

THM LONG AND NAEROW TORY.
Fig. 4 is one inch square, and contains one square inch.

Fig. 4

TIIT AqUARE FCRN.

Now let lig. 2 reprecent a box four fict long and a quarter of n fout wille: it comtains only ane spuare foot; yet its outaide mall is cight and a half fert. Jat lis : mpment one two tere lomes and half a foot wirle; it aloo comains one sumare foot, yet it is only fiec fect in cincumfernec; while a bux one foot square contains just as mula porm, yet is only jume feet ronnd-less by one half than lix. it, yet of he same eapucity.

Suprised at this rentit, yon, perhap, inquire how is this possible? Ohserve: A hoise ion fert long and 1 font wide contains only 100 sumare fect, but takes 202 fient of ontside wall, or just 2 fert of ousside wail to 1 fert of inside mom. If two fert wide, it would be ouly two feet farther rounl, yet contain double the room, or about one toot of room to earh foot of wall. If 5 feet wide, it is 210 fret round, yet contains 500 square feet, or
somo two and a half feet of room to one of wall, whereas the first was less than half a foot-an increase of five hendred per cent. Carry up the supposition to 100 feet wide-it gives 10,000 square fect to 400 fect of wall, or over 22 feet of rom to one of wall, instead of half a foot, as in the one frot wide house, which is bontr-five timis more room in proportion to wall. Please poinder over and re-read this point till you have mastered it, andtill you both see that it is so, and wehy?

This same law, which governs all measurements, renders the circumference of the circle, in preprirtion to its capacity, less than that of any other figure; and, of course, the nearer any figure approaches to the spherimal, the greater will be its capaity, compared with its surface. ${ }^{29}$

Since, then, the circle gains even on tho square, of course a square house holds more, for its wall, than a long and narrow one, and a round one than a square one. Consequently, long and narrow houses cost more for wall, foundations, etc., than square ones, compared with their room.

To inclose a house 100 by 10 , you have to build $2: 20$ fect of wall, yet have only 1,000 sfluare fect. One 30 by 80 takes the same 220 feet of wall, yet gives 2,400 square feet, or almost teice and a helf as much room for the same wall. Put this wall into a square form, we have n house 55 feet square and 3,328 square feet, yet only the same 220 fect of wall. That is, the latter contains as much room as both the former, lacking only 72 square feet, yet has not one inch more vall.

This result, stated in a former edition, was stoutly denied by a neighloring meehanie, because ho could not see now it should be. 1 inguired, "Erect a binilding 50 by 10 , how many feet of wall does it take?" He repliced, " 120.0 "Now, how many square fiet dows it contain?" "I'en into fifty, or s,00," he answerced. "And how many foet of wall does it require to ineloce one 30 feet square?" "Four times 30 are 120 , the same as the other," he rejoined. "And how many square fect does it contain?" "Thirty times thirty of course, or 000 ." " Iacking only 100 square feet of being double," I replied. "Then build both walls close together-you have 100 feet of wall, and no space inclosed." "I sco it is so, but can't sec why," said he.

The reader is requested to master fully, and to remember, the principle here demonstrated, ${ }^{28}$ as we shall have frequent occasion to refer to it hereafter. Indeed, the knowledge of this law led to those architectural studies and improvements which this work was written to expound.

32. tie winged ftrle is doubly odjectionable,

Because it involves the loss just shown to appertain to long and narrow houses, ${ }^{31}$ in aldition to that of four long strips in ench comer. Suppose the walls, a, had leen made at b, and c at d, Fig. 6, they would not hive been an inch longer, but would have inclosed all the space marked "Lost" in Fig. 6, and thus of each of the other three corners.

This is a ground plan of a winged house, drawn on a scale of sixteen feet to the inch, and represents the upright, 32 by 28 , and the winge, 24 by 24 each. The armigement of the groumd rooms are usually much as here represented: P for parlor, 24 by 16 ; E , entry, 10 by :32; S, sittilifroom; B, B, bed-rooms; K, kitchen; c, clnsets, cte. It is, therefore, $\mathbf{2 1}+21+28=\mathbf{7 6}$ feet long,* its circumfercuer, $2 \times \times 2+: 20 \times 2=120$ fect for the upright and gable couls of the wings, and 24×4 fir the rest $=96+120=216$, the total ciremmfereuce of the outside wall. Yet it contains only 2,0 IS sumare feet on the first fioor; wherens, a square house of the same circumfernice $=216 \div 4=54 \times 54=2,016$, or a clear anin of ont-rinde juint by the mere form of the sfuare house over the winged one. That is, if the sepuare one costs $\$ 1,000$, the winged one, thungh mot a foot larger on the gromd, would cost $\$ 6,000-$ an item worth saving-besides the additional expensiveness of building three small houses, as in the winged style, instead of one, as in the stmare.

Another loss accrues in the maone of these wings, which aro generally only one story hinh, while the upright is usually two

[^1]
stories. Not to reckon the atties in either house, because they are comparatively unused, observe that all this expense of foumiar tions and rootis of these wings is incurred for a sinale stons. ${ }^{\text {a }}$ Now, the additional expense of carrying them up another story would scarcoly excced, if it equaled, the extracost of making
three frames, three sets of rafters, phates, eare-troughs, etc., for tho winged honse, in plate of one in the sinase; and yet you have one story on each wing mons roon. Or thus: the winged house contains $24 \times 24 \times 2+32 \times 28 \times 2=2,944$ square feet; while the square house contains $54 \times 54 \times 2=5,832$ square feet. Reduce these ly fractions, thus:
$$
\frac{5,8: 32}{2,914} \div 8=\frac{729}{364} \div 8=\frac{91}{46} \div 5=\frac{18}{9} \div 9=\frac{2}{1}
$$

That is, the square house contains just twice as much as the winged one-another loss by the winged structure, of no small moment, in aburion to all the others.

If you should earry this square house up three stories, it would contain 8,748 square feet to the wiuged one's 2,944 ; or,

$$
\begin{aligned}
& 8,7 \cdot 49 \\
& 2,64
\end{aligned} 8=\frac{1,0093}{368} \div 8=\frac{1864}{46} \div 5=\frac{27}{9} \div 0=\frac{3}{1} ;
$$

on ovear thefe thmes as much room in the square house of three stories, as in the winged one two stories in the upright and one story wings. lit the spmare one would cost the leagt. Just the rimane of the wiughi (ine would cost considerable more than that of the chreestory stuare one.

Amother great lose crinsists in making so many extra anges. Instiad of four, as in the square homse, you lave twelve, and every lowerl, lath, and timber employed in making it, not only has to be cut, to the shameful wate of stafl, hat also of mechanics' time to mite every angle, and fit every juint. Comers are very expensive, got the roon they incluse is almost useless-a third loss by the winged styte. Sin Fig. 11, and explanation.

Another proporimate loss is sustained by the entmes, which, in honses of this himl, shomb be at least ten feet wide. Thus the ruom lest in tho winged homse is $10 \times 52-320$, and double this, or $6 ; 10$, in the two stories; whereas that in the double house is $54 \times 10=5.40 \times 2=1,0 \mathrm{~s} 0$. Suhtract the 640 square feet entry of the winged houce from its $\mathbf{2}, 0.41$ square fect, leaves only 2,304 spuare feet within the rooms; whereas suhtract the 1,080 square fret entry of the synare house from its $5,8: 22$ square fect, we have 4,752 square feet within the rooms, which reduce:

$$
\frac{4,75: 2}{2,304} \div 12=\frac{406}{10 ; 2} \div 12=\frac{33}{16} \div 16=\frac{2}{1} ;
$$

which is more than double the number of square feet within the rooms of the square house than within those of the winged one!*

To present these gains and losses in a tabular form, the circumference of each being 216 fect :

	Wingerd ho	Aq
No. syunre feet in first floor .	2,048	916
No. syuare feet in second floor,	$891 ;$	2,01
Total in both floors		b,

Sulbtract the 2,944 square fect in the winged house from the 5,832 spuare feet in the square house, and there is lacking only 88 syuare fect pr being vouble in the simare house oper aid alovo the winged one. Or, if the square honse be three thries, it will contain threejtines as much as the winged one, latking only 84 square feet. Better sink two-timbss of your building money in the sen, and build a three-story squire house with the balance, than to build a winged house with the. whole. Su, anuch for this fancy style.

And then, how it looks! Wings on houses are tot in quite ns good taste as on birds. How would a little applelor peach look stuck on each side of a large one? Yet winged houses are just as disjointed and out of taste. Such a house-three times as loug as wide; so low and yet so long; great outside and little inside; the parlor less than a mile from the kitchen, and separated from all the rest of the house by a wide, cold, cheerless entry; the heat radiating from every rooin out of doons, instead of into adjoining rooms, as in a square house; every room in the house, except the second story of the upright, absorbing dampness from the three foundations, nnd all but the lower story of the upright heated in summer to suffocation by the scorching sun on the roofs; the freezing winds of winter pouring in direct from without through so much outside surfice, instead of the different roons sheltering each other's sides; ${ }^{33}$ the light shining from several points of com-

[^2]pass, whercas it should shine into each room from but one direction, because a cross light is so bad for the eyes; one-third of both stories of the whole upright, or $\mathbf{6 0 0}$ of the 2,900 feet, or one-fifth of the whole house, consumed by an entry which is a perfect nuisance in winter, and almost useless in summer; and every thing about it so perfectly extravagant and inconvenient-let purse-proud, empty-headed nabobs throw away themselves, their comfort, and their moncy on winged houses, but give me some other form. Surely none will build winged houses but those who, from sheer thoughtlessness or inability, fail to perceive their disadvantages.
"This difference can not be possille," many will exclaim; but, if such doubt my figuring, they will find their own to agree substantially with these resulte, for arithmetic can not lie.

The prineiple here involved is also still further demonstrated hy a caleulation of the number of cubic feet contained in the two houses. Suppose each story of each house to be 10 feet high. The square house contains $51 \times 5.4 \times 10$ cubic fert in cach story, cqualing 2!, $160 \times 2=58,3: 0$ in both, or, deducting 10,800 for the entries, 47,500 within the rooms; while the winged house has only 20.140 cubic feet in both stories, less 6,400 in the entries $=\mathbf{2 3 , 0 . 1}$. Now the dillerence in a lifetime between living in a house which contains 47,000 cubic feet of breathing-timber, compared with one whith contaius only 23,000 , or less than one-half as much, is no trifle. Give me air, and since we all spend one half of our lives within doors, a roomy house is a very great desideratum.

But the square house can be earried up three stories cheaper than the winged one can be built only two in the eenter, and tho wings one, and will then contain 87,480 minus $16,200-a$ differ. ence of $\frac{71,000}{2: 3,000}=\frac{5}{2}$, or twice and one half inore cubic fect in the three-storied square house than in the winged, which rarely is, and can not well be, earried up hiyher than just estinated, whereas the square of that size looks better three stories than less. All this, besides the greater heat in summer in the winged house, while the square one has a middle story neither damp nor hot, but admirable for sleeping-rooms. And in this winged house you
have no wood-house, nor any place for any, without its darkening some of: your rooms and enhancing its unsightliness. Not so with a square one.

Some will censure me for dwelling thus. I do so partly to show what foolish antics moneyed simpletons will play, for no other earthly reason than to be fashionalile, but mainly to demonstrate some mathematical laws-as enduring as Nature-to be applied hercafter, as well as that the reader may fully comprehend the nasis of these calculations, which will render him ozrtans that they are correct.

33. THE COTTAGE OR DORIO BTYLE.

"Ah, this is the plan for a most beautiful and most perfect house. How cunning, how pretty, it docs look!" is the general talk. Being all the rage, it must indeed be "a good many touches above common." Let us see.

Every room joins foundation or roof. This is a decided oljection, as alrealy seen. ${ }^{21}$ And why this extra steepness of roof? Its admiters must certainly love to lay and swelter in an attic room August nights better than I do, or else they would not take so much pains to make so much more roof than is necessary, and this so steep as to catch the full power of the sun. And then, see how much more expensive such roofs are for the room sheltered, conserpuent on their steepness, which greatly increases their cost, at the same time that it actually injures the house.

And then, why so many roofs, and comers in these roofs, which are doubly expensive and far poorer, in every respect, than if in two whole sheets? The raftering, boarding, shingling, uniting the eight shects of roof at their catercornered junctions, so as to prevent their leaking, the roum lisown away in the peaks, and the finified fixings around the roofs, put on for ornament, yet violating every principle of correct taste, all condemn this style.

And here let mo develop the law which governs this whole subject of taste and beauty. Nature furnishes our only patterns of true ornament. All she makes is beautiful, but, mark, she never puts on any thing exclusively for ornament as suci. She appends only what is useful, and even absolutely necessary, yet so appends it
as that all necessary appendages add to beauty. Take mouth, nose, ears, hands, feet, ete., as examples, or the various parts of flowers, etc. Every thing in Nature is the perfection of beauty, yct is any single vselass; omament found throughout all her works? Suppose the borly lumbered up with a parcel of useless appendages, however beautiful they might be where they were usefinl, jet should we be any more handsome? Should not we be deformed thereby? How would a gold ring, however expuisitely carved, look in the nose or lips? How ugly would those dangling ear-rings look, if custom did not reconcile us to their uso. Other fashionable toilet appeldares might be eited as still more ridiculons, simply because put ou fir ornment, where they are worse than useless. But the law of things, that whatever appendage, however beantiful where it is useful, theiefore deforms, instead of adorns, where it is weless, is too plain to require alditiomal illustration, and its applimation to these finified carvinge and conniniog of the cothage style, the papable to excite any thing but dieginat in thane of corrwet tastes. For a child whose tastes are get immatme to he tiohed liy them, would not be surprising, but for the flete to be chamored with them only shows how unew they are, at henst in arditecture.

For the same reasoni that the form of a winged houso is objectionable, is the colture shape propertionally so; for it conslists in dablity of an upright and two wing, execting that there are four sets of rafters, cte., wiht rootis banglingly joined, instead of thres, as in the winnerl, nud one in the square house. The accompanying diagram will best illustrate this point. (Sce Fig. 7, p. 77.)

The entry, E, must of contre be in the midulle of the upright part, and this leaves four little roons searcely better than moneA, B, C, and J -and the balane of the rooms miserably partitioned. Suppose the house were built out square with the uprights, namely, with thoso dotted lines in the figure, besides tho net gain of the four figuros, a, b, c, a, the other four, $\Lambda, \mathrm{B}, \mathrm{C}, \mathrm{J}$, joined with them, would make so much targer rooms of A a, $B b$, C c, J) d, without buiding an inch more of outside wall, and with a saving of all those consens, so wasteful of stuff, and so hinder. some to the earpenter.

Fig. 7.

THI OOTAOE ETYLI.
The same calculations which showed the loss consequent on tho winged structure, will apply both to tho cottage and the cross structure. loth are combinations of folly and extravagance, and destructive alike of heauty and utility.

Another phase of this principle will still more forcibly illustrate the superiority of the square form over the winged and cottage styles. An enterprising neighbor consulted ne alout building an addition to his larn. The old one was some 15) by 30, marked A, in the accompanying figure (Fig. 8), and he proposed to build two more of the same size on cach comer, marked E and F, and askel what I thought of this plan. I replied: "Suppose the wall a had been built at b, c at d, c at f, g at h, nnd i at j, you would have had all these spaces, B, C, and D, added to your inclosed

Fig. 8.

AN AWKFABD mate.
room, without adding one inch to your foundations or walls, and pith an actual saving of the walls l and k. By your proposed plan you have only 1,350 feet of room, but by mine 2,700 , ol exactly twice as much room, yet 60 fect, or almost onf-fourtn less of wall and fuundation, which will almost make up the extra cost of roof. Double the room and one-fourth less wall makes a differ. ence of some sixty-tico per cent, more of room in proportion to wall by my plan than yours." "I declare," he exclaimed, "I do wish I had seen you before." "Besides," I added, " you can not get from one barn to nnother without going out of doors.

34. admitions stuce on.

Invited to deliver the address before the literary societies of Pultney Academic Jnstitute, Vt., I ohscrved a house in that village, with some pretensions to style, built as in Fig. 9 . II, house proper; K, kitchen; W, wool-house. Now, pray, how much more wall fomblation would it have taken to have built his walls where the dotted lines are? Not an inch, and yet he would have inclosed those two large spaces, $l l$, now lost. This same length of wall could have been made to incloso more than double the

Fis.

AK EITEAVAGANE HOUSE
room it now does, without costing one cent more, except for floor and roof. And, yet, observe in traveling, almost every house commits a like arror, or, rather, extravagance; for it is a thought-

Fig. 10.

UKBIGTTLT ADDITIONB.
U, upright; K, zlichen ; W, wash-room and wood-bouse; I_{n}, loat.
less but wieked waste of building money. Nearly all have an upright, a kitchen part, in the form of a T or $\mathrm{L},{ }^{, 8}$ and then some
onthuildings, as wash or woodthouse, buit upon the back of all these. Look at such houses with a critic's eye. Do they not strike you as out of all proportion, besides the loss of all the room embraced in the dotted lines. Ohserve the double luss, first these buildings being long and narrow, whereas a square one would have inelosed much more, ${ }^{25}$ and secondly, that marked by dotted lines.

Another loss, not yet estimated, hut conserfuent on the winged, cottage, and cross structure, is in their consens. Heference is now hat, not to tho loss of time and materials consequent on constructing a wall of a given length all full of corners, compared with making a strait one of the same length-that is, the saving oceasioned by !nilding a square house with only four right-angles, compared with the hess of materials and labor consequent on making twelve corners, as in the cottage, cross, and winged styles-itself a very preat loss-and all without gaining any thing bat a loss; but I refer to the lose inside the rooms-not to the loss of time and materiat of making twelve nssibe as well as outside cornere, 1 ut to the romm lost in the comers themselves. The comers of rooms are of litlle nie ayy way, becanse dark, far from the fire, dispraseing to furniture, and rarely occupied. This is true of all corners, and of course the loss is theee thase as great in the cottage, crose, and winged styles as in the sinare one, because they contain four time as many eorners, athe these mearer together. And this loss appertains to both storics. Let the following diagram (Fig. 11) illnstrate the principle here involved.

A house with these corners left out, as in those dotted lines, - would contain just about as mush aramable or useful room ns with them. Now suppose, instemd of losing four corners in each story, you lose twelve, this loss amounts to considerable, in ad. dition to all those other losses alvealy pminted ont. Away, then, with all three of these fancy styles, Those who fincy or adopt then must be either woik or thoughtless-weak if they ean not perceive their inferiority in every recpect, and thoughtless if they can, but do mot.

To sum up these results. Low houses are far more expensive, less confurtable, and esery way inferior to high ones. Large

Fig. 11.

LOSS OCCAMIONED BT COLANEER
houses are much cheaper, relatively, than small ones. The winged, cottage, and all irregular forms of houses cost far more than the square, yet are far inferior to it, besides making far less show in proportion to cost.

SECTION IV.

gUPERIORITY OF TIIE OCTAGON FORM.

35. IT CONTAINS ONE-FIFTII MORE ROON FOR ITB WALI.

Bur is the square form the best of all? Is the right-angle the best angle? Cin not some radical improvement be made, both in the outside form and the internal arrangement of our houses? Nature's forms are mostly spinerical. She makes ten thousand curvilineal to one square figure. Then why not apply her forms to houses? Fruits, cerss, tuhers, nuts, graine, seeds, trees, etc., are made spherical, in order to inclose the most material in the least compass. Sinee, as already shown, a circle incloses more space for its surface, tham any other form, ${ }^{8 \cdot}$ of course the nearer spherical our honses, the more inside room for the outside wall, besides being more comfortable. Sce figures 2, 3, 4, 5. Of course the octngon, by aproximating to the circle, iucloses more space for its wall than the supare, besides being more conpact and available. Why not employ some other mathematical figures ns well as the simare? These reasonings developed the architectural principle clamed as a real introvement, and to expound which this work was writen. Hithero men have employed the right-angle, becanse it cests so mueh to frame other angles; yet our gravel-wall plan obviates this difliculty, it being as easy to corner at an oetagon as rectangle. And since the principle here involved is the grand basis of that architectural superstructure attempted to be rearel in this volurne, the author may do well to elucidate it fully, and the reader to comprehend it perfectly. To compare the square with the octagon, see Figs. 12, 13.

Fig. 12 is four inches square. Let it represent a house thirty.
two fect square, one inch representing eight feet. It is 128 feet in circumference, and incloses 1,024 square feet.

THE BQOAET FOEM
Fig. 13 is an octagon, with sixteen-feet sides, on the same scale, and having of course the same circumference, namcly, 128 fect. But it contains 1,218 square feet, as seen by the following demonstration:
Square feolA, D, E, H, is 16 by 39 , and containg624
$\mathrm{B}, \mathrm{C}, \mathrm{K}, \mathrm{N}$, is 11 by 16 , and contains 176
I, G, M, L, is also 11 by 10 , add contains 176
The four half-squares, A N B,CDK,EIL, and GH M, make two squares, each 11 feet 248
Totel number of square feet in the octegon 1,218

Fig. 13.

But the square of the same cireumference contains only 1,024 square feet. So that the octigon exceeds the square by 194 square fect-a gain of one-firti.
-To show this diflerenee by reducing their respective numbers of square fert to fractions. Dropping cighteen square feet from the oetagom, and twenty-fine from the square, the sum stands:

$$
12 \div 2=\frac{6}{5}=0 \text { ONE-FIFTH gain }
$$

in favor of the octagm. That is, an oftagon of a given ciremm. ference contains more than a sipure of the same circumference by 100 sipuare fect in every 500 spuare fent. Now, since at given length of octagon wall will inclose one-fifth more space than the same length of waill in a square shape, of course you can have the
same sized wall for one-fifh less money, or the wall of a house obe-fifth larger for the same sum; for this gain is just as great in the foundation, siding, plastering, painting, whitewashing, etc., as in the wall proper. It appertains alike to materials, labor, and every thing about the wall. The duors and windows might be consillered an exception, yet they are not. Given sized windows will light, a room more than thnse n fifth larger in the octagon thin in the sefuare-first, becanso the lattor has deep, dark corners, which will be dark in a cloudy day however large your windows, which is not the caso with the octagon; and also because the octagon form makes the saine gain in the dfrpit of the rooms that it does in the length of the walls, that is, the room is more comifact.
To put tngether two important results at which we have thus arrived. We have seen that a squave house of a given circumference contains more than an oblong one of the same circumference, and an octagon more than a square. Let us compare them. Take a house 24 feet front by 40 decp. Its circumference is, of course, 128 feet, the samo as a 16 fiect octagon, and a 32 feet square. But it contains ouly 9 ?f0 sipure fept. 'The difference between it and the octagen is one-third, as reducing the square feet of both to fractions will show. Thus:

$$
\frac{1218}{960} \div 8=\frac{152}{120} \div 8=\frac{19}{15} \div 5=\frac{4}{3} \div 3=\frac{14}{1} \div 1=\frac{1}{3}
$$

equal to one-tiurd more room in the octagon than in the 24-hy40 fect house, thongh the circumferences of both are exactly the same.

The foem of our houses, then, is uot so trifing a matter after all. The practical difference between huilding the outside of a house for $\$ 3,000$, or just as large and good a one for $\$ 2,000$, or in that propertion, is consideratole, especially to those daborers who carn their money by bono and muscle.

But the difference hetween the octagon and the winged is still greater. Suppose the upright of a winged house to le 20 by 15 fret, and the wings 10 by 15 feet each. Its circumference will then be one hundred and thirty-two feet more than the circumference of the sixteen-fect octagon. The winged house will con-
tain only $20 \times 15+15 \times 10+15 \times 10=600$, which compares with the octagon as fullows:

$$
\frac{1218}{600} \div 8=\frac{152}{75} \div 6=\frac{25}{12}+2=\frac{12}{6}+6=\frac{2}{1},
$$

or not one malf, though having more outside wall.
But suppose the upright to be two storics, while the wings are only one, which is usually tho case, while the octagon is two stories, which it should he to look well, the winged will contain only 900 square fect, while the octagon will contain 2,436 . Thus:

$$
\frac{2430}{000} \div 12=\frac{203}{75} \div 7=\frac{29}{11} \div 11=\frac{21}{1},
$$

two and a half times more room in the octagon than in the winged shape, though the latter is two feet more in circumference. Now the diflerence between building a winged house wall for $\$ 2,500$, or just as large an octaronal ono for $\$ 1,000$, is something worth considering. Yet even all this saving, great as it is, is but n small part of the advantages of the style of building which this book was written to propound over others now in use, which we shall sce as we proced.

One other advantage of the octagonal style over the square, and especially over the cottage and winged styles, deserves to be reckoned in this comparison, namely, their comerbs. We have already seen, in Fig. 11, that the comers of a square room aro of little account, because dark, useless for furniture, and rarely occupied for any purpose. In fact, an octagon, drawn witime the square, furnishos alone as much avallable room as the square, yet contains only cighty fect to the square's nincty-eight:

$$
\frac{98}{80} \div 2=\frac{49}{40} \div 10=\frac{5}{4} \div 4=\frac{14}{1},
$$

a loss of twenty-five per cent. in the amount of wall in the square over and nhove the same amount of available room in the octagon. lut surpose, as in the winged and cottage styles, there are twelve right ungles, instead of four, the loss is in the same proportion:

$$
\frac{98}{54} \div 6=\frac{16}{0}=\text { almost } 40 \text { per cent. }
$$

Fig. 11 also enables us to show-what has doubtless puzzled some readers-wny this gain by the octagon over the square. It consists in the fact that it requires more wall to inclose the corners, in proportion to the number of square feet which they contain, than the house as a whole. Thus, those eight lines which form the four right angles of the four half squares in the cornors of the square, which are onitted by the dotted lines of the octagon, are seven feet per side, making tngether fifty-six feet. Yet they inclose only two seven-feet squares, or ninety-eight square feet, or four feet wall to seven square feet inclosed. That is, a foot of comer wall incloses less than two square feet, whereas the octagon has only 80 fect wall to its 478 square feet, which is:

$$
\frac{478}{80} \div 10=\frac{48}{8} \div 8=\frac{6}{1}
$$

or six square feet for every font of wall; whereas the four corners omitted by the dotted lines contain only two square fect for every foot of wall. That is, the octagon incloses six square feet to every foot of wall, whilo the triangles, or corners of square rooms, inclose only two square feet to every foot of wall-a difference of three to one, which is lost in the corners of the square over the octagon as a whole.

The gain in twelve, sixteen, and twenty-sided figures over even the octagon, is greater, and still grenter in proportion as the figure approaches the circle. Yet so many comers cost more extra than they save.

36. tif comparative beauty of tife dorio, bquare, and ootacon forms.

The neauty of a house is scarcely less important than its room. True, a homely hut convenient house is better than a beautiful but incommodious one, yet beauty and utility, so far from being incompatible with each other, are as closely united in art as in nature ; that is, are inseipatable. It is hardly possible to have a truly handsome house without its being capable of being made as handy inside as it is beautiful outside; nor can a homely. looking house well be made convenient. I repeat, beauty and utility are as closely united in architecture as they are through-
out all Nature. If, therefore, the seluare or winged form of house is the best, it will troo lest, and it it is the most beautiful, it can be made the most comfortable.

Form imbodies an important ciement of beanty. Yet somo forms are constitutionally mere beautiful than others. Of theso the spherical is more heantiful than the angular, and the stnomth and undulating than the rourh and projecting. Why is it that a poor animal, or a lam permi, is move lomely than the samo animal or persom when flowy? Because the latter are less anguJar atd more spherical than the former. Why do we behold flat, amooth stones with more pleasure than those which are rough and irrerplar, hut licause there are less anobes in the fomer than the latter? Why is the shape of apples, peaches, cte., more beantiful than of chestmet burs? This principle answers, excepting what beanty is inpurted by color. And the more acute the angle, the less beatifit; het the more the angle appoaches the sirele, the more beatitil. Itenes a strare house is more beathtiful than a trianguar one, and an metarem or duonecorom than either. Of course, then, the the greater number of right angles in the winged and cress style: that in the octagonal, and the high paras of the rosis of the dorit, preve them to be less hamdsome than a square house, and dombly less than the octagen. For one, I can not consider cottages or wings handsome. They always strike me as unsightly, and well-nigh deformed. And the basis of this sentence is an immutalle law of Nature. Look at a dome, and then at a cottage ruot, full of sharp peaks, sticking out in various directions, and say if the undulating rennlarity of the former lons not strike the cye far more agrecally than the sharp projections of the latter. 'This is not one of those fancy matters which allow of diversity of opinion, but is a fixed ordinance of Nature, amd passes me cmiable sentence on the tastes of those who clam to posesess as great a prepmateratice of good taste as of propery, hesides their other prerogatives. And facts sustain this theory, as all will say who compare figures $2,3,4,5,6,7,9,10$, and 13 will each other.

Sinee, then, the octaron form is more beantiful as well as capacious, and more consomint with tho predominant or governing form of Nature-the spherical-it deserves consideration.
" But," some will ask, "how happens it that our author is so very mueb smarter than all the world besides? 'Why has not this plan, if really so superior, been secu and put in practice long ngo, especially since men are racking their inventions in search of building improvements?" Because of the greater ease of framino the right angle than nuy other; and unless this difficulty can be overoome, it will be cheaper, after all, to huild on the square than on the oetaromal plan. This difficalty is wholly obviated by our gravel-wall plan, which enables us with little extra expense, and a great inerense of strengh, to secure our octagon form.

But can this oetngonal form be paititioned off into noome as advautageously as tho square? Far more so. Let us see.

37. plan of an octagon.

This plan enables us to dispense with an upper entry almost altocrether, atid thus to save one-fifth of our room, and therely estape this great thoroughfire for winter air, as well as this separator of the main rooms of a house. Entries above are of very litte use, wasto about n sixth of the entire house, are right in the way, and, in many respeets, perfect nuisances.
"But must we enter directly into our best rooms? IIow enn we do without them?" I will show you. Your honse requires a thoroughfire, that is, an entry, so that you can pass through it. But wneme shall this thoroughfire be? Not through your main story, for this will bring in the most ditt where it is most troublesome, namely, near your nicest rooms, but through that light, airy basement alroady described. Youl require this entry quite ns much for going to and from your cellar story with harrels, garden sunce, wool, ete., as for the special accommodation of your parlors. At all events this great thoroughfave should be throurh the cellar story, a plan for which is scen in lig. 14.

One great advantage of this $\boldsymbol{j}^{\text {lan }}$ is, that it allows us to have the basement story mostly above ground, which enabiles us to eonvert the wrole of the room inclosed by the foundation to some good use, instead of, as by the old plan, wasting all but a twenty. feet square hole, which is less than a third of the 1,218 squaro fect, inclosed by a sixteen-fect octagon. See to what an excel-
lent use the accompanying ground-plan converts the entire octagon basement! A wash-kitchen for the rough work of the family

Fig. 11

is much needed in every house. This great convenience our plan fumishes. It is also even with the ground, and, of course, handy for wood and water, and away from your nice rooms; it is, in short, just where it should be.

A MILE ROOM

is another great desideratum. This should be below stairs, yet le light and airy; and our plan gives just the one wanted, and just where it is most convenient, namely, near your basement kitchen. The milk can also be taken in and out through the cellar entry, and thus save steps, and be wholly by itself.

a furnace

is by far a better plan for warming a house than separate fireplaces, or grates, or stoves, for each room. It is much more effectual, and every way more convenient, less expensive, and easily tended. Then, the making of ono fire per day serves for the whole houso, and saves time, kindlings, and much expense and troublo, besides the great saving of fuel. For this convenience our plan provides, and its location is central, so that it can easily heat any or all the upper rooms.

A WOOD-HOUBE

is an appendage indispensable to a comfortable house. Nor should it be away off at the extreme end of a long row of outbuildings, but oentral. Now one quarter of this cellar story is just the place for it, and saves the entire expense of wood-houso foundation, roof, timber, siding, and all, yet provides an admirahe one, and in a central location, close to the furrace, and to that central staircase which conncets it with the whole house. When yoll want wood, therefore, you are not obliged to go through hall and kitchen, away out of doors, perhaps through snow and rain, but go from any part of the house directly to it, as if you were going from oue room in the house to another. This room is also large enough to hold even more than a full stornge of wood, and will furnish an admirable place for tools, etc. The wood can be cut outside, and thrown in through the window, W. Mark, you have this superb wood-house without any expenbe, for you build it wimle laying tief foundation of your house; whereas the mere expense of foundation and roof for one is considerable.

A LARGE LOMBER-ROOM

is also provided for by this plan. Every house should havo such a room, to take the place of garrets, only more accessible and convenient, for waste lumber and seasoned timber-for, perhaps, a work-bench-a very handy aflair about a housc. Our plan provides just the place required.

Two large, lighted, and easily ventilated sauce-cellars, in addition to all these other conveniences, are provided for by this plan, which are, of course, indispensable, and one of which is connected
with tho basement kithow. But see how easy of access all these rooms are, and low light and pleasant, instead of damp and dark! And the arrangement of the stairs is such as to render every room in this barament ferfectly accessible. You do not have to go through several to get to one, but go from the center to any one of them, and from this conter up to any required room alove.

The aggregate number of square feet alrady shown to be contained in a sixteen-feet octagon, is 1,218 , or $1: 36$ square yards. Of this, the entry, 6 or 8 by 39, secupics 234 to $312 ; *$ the subkitchen contains about i81 square feet, or 20 square yards, equal

Fic. 15.

* In these and suhwerpent as woll as preceling estimates, no nllowance is uade for the room cecupied hy wall, which being triflitg, we come near enough for all practical purposes.
to a room 12 by 15 , but can casily be made larger, and can have two windows, ly having the partition on the other side of the window-though this would render one sauce-cellar dark and small, yet, perhaps, all the better-while the milk-room can bo made of any size you like. Or, the milk and wood rooms cin be made to change places. There is space enough to render these rooms sufficiently large for all practical purposes, and you can vary their relative size and location at pleasuro-no small recommendation of this plan. How incomparably superior, in every respect, this, basement to our present pit-hole cellars, with all the rest of the foundation-room thrown away, besides the expense of wood-house, which is no trifle!

But let us ascend by these stairs-the foot of which should bo toward the sub-kitchen-to the principal story of the house, and see how we can arrange its rooms. We enter into that triaugle in its ecnter, which should have been drawn larger, large enough to receive tho ceilar stairs, and also to admit of stairs by which to ascend to the story above; the details of which you and your carpenter can plan to your liking.

This diagram, drawn on the same scale, gives four fine large rooms, of the following dimensions:

To compare this sixteen-fect octagon with a large house having a kitchen in the rear, and a wood-house still farther back, which is the usual style of large double houses. We sometines see

[^3]slight deviations from this partitioning off of rooms, but this is the generic type of nearly all such houses. Their sizes vary, yet this will not materially affect our general results.

Let this large and splendid mansion be three stories, 40 by 42, with a rear kitchen, 18 ly 26 i , as represented in Fig .16.

Its total circumference is 216 , exactly the same with the winged house drawn in Fig. 6 (see p. 71). Its entire contents is $42 \times 40+26 \times 18=2,148$ on the first floor, kitchen included. From this deduct its cutries, $10 \times 42+12$, e, $10 \times 4=460$, and 120 for five stacks of chimneys, $3 \times 8=23 \times 5=120$, and you have only 1 , 5 , 8 square feet within the rooms.

This mngnificent mansion, then, exceeds the small sixteen-feet octagon, in net available room, only 858 square seet, or orssinte. Or, to show this result by reducing the fractions-

$$
\frac{6961}{5406} \div 12=\frac{520}{400} \div 10=\frac{52}{45} \div 5=\frac{10}{9} ;
$$

equal to one-ninth diflicrence. That is, the large mansion and the small octagen are to each other as ten to nine. Yet the mansion will cost more than four octagons; nor will the former bear any comparison with the latter in puint of convenience; of which anon.
38. conparigon of a dotrif mansion hoube with a twenty-GEVEN-FEFT UCTAGON.
Let us next compare the net room in this massive double house with that in an octagon of the same circumference, namely $216 \div 8=27$ fect; the dimensions of which are given in the diagram on page 95 , drawn on a scale of 16 fect to the inch.

This octagon is 64 feet through. Square this, $64 \times 64=4,006$;

Fig. 16.

from which take the four half seluares at the four corners (one of which is illustrated ing dolted lines), which equal two siquares 20 fect each $=20 \times 20 \times 2=800$; and you have $4,090-800=3,206$ square feet within the octagon. From this deduct 200 square feet for entries and stairway, and you have 3,096 net room.

Net rom on the firct noor, 3, mols

Total net romin in the three storics, garret, and basement, $=16,162$
Reducing the net ruom in both houses by fractions, they stand thus:

$$
\frac{1: 1502}{6264} \div 12=\frac{121: 3}{522} \div 8=\frac{158}{65} \div 2=\frac{79}{32} \div 32=\frac{2,25}{1} .
$$

That is, the ortag'n comains twice and almost a malf as muth net roum as the splendid m:msion of the same outside wall, saving that the kitchan is only two stories. True, we reckon more of the basement of the octagon, relatively, than of the mansion, becaue the whole of the former will be thaned to an exeelLent practical accomet; yet we have reckoned as much of the cel-- lar story of our first houses as is generally used. Nor have we donluted any thing on acount of those useless corners between the chimmeys and walls.

Besides, sce what a magnilicent upper story we have in our octagen, compared with the garrets of the mansion. But the octagon exceeds the mansion no less in its size, than in

39. the bupfrn ambangement of 1 ts roomb.

But the size and convenience of ita rooms are a still greater allumtare.

F, fumt; I, door; W, wimlow; e, closet; B, bedroom; Par., parlor; Pan., pantry; 1) P, diak pantry; Sit., sitting-room, etc. I do not say that this inside arrangement of rooms is the best that can he devisol, bat I dos say that it ineomparahly cxeeds any arrangement of roons of which the square house admits. Besides the charm of novely-of dillering from all kinds of rooms now

TWENTY-SEVEN IRF.T OGTAGON.
in use-it will combine an amomit of advantages found in no house extant. To examine them more particularly :

The parlor is $19 \times 27-100$ sq. ft. $=513 \mathrm{sq} . \mathrm{ft} .=67 \mathrm{sq} . \mathrm{yds}$.
Lihisary, L,
Beidroon, B, of library,
Sitting-room, same as parlor,
t
Belromen,
Winter fitting.room,
Triangular bath-room,
Kitchen, K, and elosets,
$12 \times 13 \times 156$ " $=21^{*}$ "
$13 \times 18=169 \quad "=19$, "
.
$12 \times 15=186 \quad " \quad=57 \quad "$,

Dining-rooin and closets,
lantry und dark pantry,

$$
\begin{aligned}
13 \times 36=408 & \because \\
19 \times 36-100 & =681 \\
138 & \because \\
\frac{185}{3.231} & \underline{800}
\end{aligned}
$$

* Fractions of yards, and of fractions, aro sometimes omitted; and eometimes, if over half a yard, the whole yard is reckoned.

Now it is submitted to any practical honsekeeper whether the arrangement of the romem in this house is not two and a half times betren, as well as larger, than that of the splendid mansion, 40 ly 42, as regarils every story, from basement to attic. Instead of being separated, all the rooms are united, so that you can go from one to another without being ohliged to pass through a cold and chererless entry. And you go to and from the same point to go up as down; and that point is the centen, which makes the distance nuwh shorter. Nor, from whatever part of whichever room you may start, have jou to make any angle in going to and from this stairway; whreas, in the spuare house, you must go a himg and cirenitous route, as seen in those dotted jines. Now the diflerence, equecially to a weakly woman, between going from room to rom lig a fow direct steps, and by those long and crookel romls, as illustrated ly these tracks or dotted lines in the two houser, is very great-more than muntr--in the sparare, compared with the octas, homse. I sulmit this point to the sperial ronsideration of ewery houskeper, and leate them to say whether they conld not do twace tue wonk with the same rase in the actacom. T'O draw a specifie illu tration from getling an amatul of wond fir your stare house parlor. You must first go several steps out of your way-west when your wood is eant, to get to your entry, and then travere its whale hengh, then go through your kitclene :mil finally out of doons to get it, and retrace your step s ly the same latg. simbed and door-helged route, and through the dom- wheras, ith the ortaren, you do direct from every rom, be a few stom, twourstairway, at the bottom
 difference in fiwor of the motasen is equally wreat in erning from any part of cither homes to any part of the other. What a vast
 annaally over the spare! This sinche foature of this phan renders it invalualde, even themb thee tians mare cosily, whereas it is
 all mocewnes-l do mot mo:at pator thy-in its fanor; and whaterer saves them stopsand veations is truly inaluable.

The accommadation of a large paty of friems fumishes another illustration of the decided superiority of this plan over the square
nad doubly so over the wingel or dorie style. Here your sittingroom, parlor, and a large ledroom are thrown open into one room, and they all join the dining-room, so that your entertainment is handy, and that your guests may go from room to room without going through a cold, wide entry. You can accommodate a much larger company in the same sized house, and this juxtaposition of rooms greatly promotes sociability, whereas the dividing entry partially breaks the spell.

See, too, how much farther the same heat will go in the octigon than in the square. Its escape is by radiation through walls and crevices, and by ojen doors. In the octagon, it radiates from the sitting.room into the parlor, and the reverse, or into adjoining rooms, and is therefire saved; whereas in the spuare houso, it radiates from both sitting-room and parlor into the entry, and so eseapes. And if an inside door is opened in cold weather, the wiud does not rush in like a himricane, as if an outside door was opened, but ouly the confined air of an adjoining room gently cuters. All five of the insile or entry doors of the sfluare liouse are virtual outside doors, unless you have a fire in the hall, at a great cost of fuel nad trouble, and without even then doing much good.

The kitcuen of the octagon deserves especial remark. The kifchen is the stomach of the house. Shall it then be thrust away hark out of doors, into anolher building? This would be like putting the human stomach away down in the feet. In the oetagon kitchen, the wife, when she leaves the sitting-room to attend to kitehen duties-pleasures-instead of feeling that she is going away off alone out of doors, feels that she is only a step removed from the rest of the fimily. What say you, wives, to this?
'The sight of a tilly kitchen is not so very disgusting, even to men of retined tastes. None who are not too extra nice, fistidious, aud fashionable to eat, but like the sight of the kitchenexecpting those double-exquisite lades who are as cordially disgusted with houschold duties as with good seuse. Seusible men love to sce the kitchen, and they even take pleasure in going into it. In firt, the kitchen is as much the home of the house as tho house ", of the firm-is the "holy of holiss" of fire-side comforts. Then put it, as in this plan, alongside of the silling-room and
diningrem, and in the very heart of the house, insteded of out doors, as in the sequare form.

It is, then, very important that it be tight and comportanee. Yet the square-house kitchen has an outside door, an entry door, a woodhouse door, and a lack-kitchen door, which are tantamount to four out:ide doors, hesides two other doors and all its windows; so that the wind draws through and rapilly dissipates its heat, besides heing in a soparate building, having its kitehen stairway-virtarally five outside and three inside doors. Now I like my one onasite and two inside derered kitelnon the best. I say two inside doors-the stairway and sitting-room-because that marked in our phan betwem the kitchen and hedroom can be omitted, anel probalily shoud be. And then no cold could come in from my sitingrem deor, for, hy suposition, that room is warm, nor mon foom the stair door, because there showld be a door at the head ot the hasement stairs, so as to opera or shat the draft from the baroment at phasure. This may be my conceit; but, really, I had rather have one of my kitchens than ten of your old-style, wind-riven, out-ofdens, stomath-in-fle-fiot shantics.

Moreover, see what a hamdy little masement kitehen-close liy well and cooking-rame-his phan furminhes, which the ohd virthally denics, all but a litlic lack reom, muless you add another L ,

- on heyond your hildam. Ahd my wanhroom is just where it shomld lec-down atairs, yet licht and dry-out of parlor sight mod suchl, whore all the heary ame mpleasant work of the family ean be done. Or, if preferral, this basement kitchen can be mato larger, and have two wintows, and a dumb water to cary food and dishes up, and dawn, and serwe as the kitchen proper-one of the other basement rooms being appropriated to a sub-kitchenand this up-stairs kitchon lue made a dining-room and the omnium gutherum, or common rewhevons of the whole fimily, and connected will the bedroom- probalily the beot armagement, and incomparally superior, in every prisible respect, to the general arrangement of our kitchentad adjening roms. 1 may overrato this plam, yet will it mot rellew a family much mare comfortable than any yet devised, besides cuabling women to do their work with double dispateh and comfort? It also joins the samee cellar and well with the work kitchen-a very handy arrangement.

But see what we have gaven by the octagon plam. We build our kitchen as well as woodhouse wime laying our house foundaton, and thas have all dur hitchen and woodiouse materiale, labor, foundation, and roof! or somewlere bear one-fourtu the net total cost of the whole house; not; be it observed, by our gravel-wall plam, but by our octagon biape. All this in almition to all the items already shown to be saved by the length and superiority of wall, cheapmess, permanence, etc.
40. tie third gtohy of the octagon.

To return to our sixteen-fect octagon, Fig. 13. Stepping on to our stairs, which start close by the dwor which connects the sit-

Fig. 18.

ting-room with the stairway, we will go up two or three stairs,
toward the arole atyle 13, in lig. 14, and after rising two or three strpe, as our spare will allow, we will turn on a broad stair, and goup that rental partion, riving high mough to elcar the cellar dow, amb, "ethap, tuming again before reaching the top, Iet us see how this suite of rooms ean be diviled.

We will start our stairs so as to land at 13 on a broad stair, and tum to the right into a delightinl room rendered octagonal by making a elowet in earh comer, thus correspoming with the shape of the house, sixtocn feet symare, with one winlow and two light bedrombs with closets. Now this stgare partor, opening into two ledromens, is a very mare convenichee, such as our best houses rarcly fumin, amb for whin, at omr borarding and puhlic houses, whever has them must pay dear. This is a real and rare lusury.

A fioms, wif, amb children, or a small fomily of boarders, wihh to hate a common partor with an atjoining bedroom for themedves, and another for their children, or some near friond: this plan cioce just the thing reguired. In your spuare houso they can find mo such accommondation, but ouly two commeting renme-nor athe these pionty, and honee they must cither have a led in their sittine reme, or their chideren must lodge across a cold entry and ont of haring. Or the heads of the family may will this fir their pinate romm, they slecping in one room, and their chithen in anchar.

Yet for them, prombly, the other side of the partition would be hexe, as it is larges; ;am, bevilas having one lage amd two
 tion to a spurbus purn, ser what a smog lihrary, L , or cabinet of hells, opens into it, lishad and trimonhar, so that, for its size, it furni-hes much mere shatimom than if symare. Or some oher we can be made of it, as mility or fancy bay diedate. At all events, it is a "cmain; lithe rom," :mmimbly suited and situated to a variety of apphiatims. It would aloo make a fine bathingroman. Now is mot this admphatuland most sumet snite of rooms, wherater in any of our berathonses?

Mark, here, the apprypiatinn of the whote of the 1,218 symare feet, exerpt the filty siplare feet cocupied by your tenfeet half square; and in place of wasting $8 \times 36=258$ square fect in a room.
sipamatior entry, ohserve, also, that the aceess from each room to and from the stairway, linth nhove and brlow, charactcrizes this flath, the great utility of which was shown in the lower story. ${ }^{19}$ The same principle of saving the heat, ly its ratiating into adjoining rouns, instead of being carried ofl by a bellows entry, also characterizes this suite of rooms. Nor ean the wind get in, except at the windows. Froun the entry it is cxcluded by the door at the top of the cellar stais; and the eserping heat from the story below, fumace, cte, will render the entry guite wam enomph, in the coldest of weather, so that neat, instead of cold, will come in at the entry duors.

The lire will he at F , opposite the window, so that, as you sit with your fict to the fire, your back will be to the window, which is just the thing for reading. And one lare window lights a room far better than two or three eross lighty, which confunce and injure the eye, shine thromg a newspiper and blur it from one window, as jou hold it un to real by another, and are every way ohjeotiomable, as all opticians assert, and the laws of opties prove.
'Ihis beantiful feature of this finm is so vitally important as to descre ilhastration. Wegunemally wish to sit with war fect to the fire, and comfort, in a colld day, requires that the wind cone upon our backs, insthad of siles, che we are in dinger of ficezing one side while we seorch the other. Wind at our backs is warded oll. Not so when it strikes at our sides. Now sit down with your feet to the fire of cither of those square romens of the oldfar hionced house. Fou have an cutry door at your lack, two bindows on one side, and one in front, pouring a slram of cold nir on all sides. You may wad it ofl hy turning half around, but then you are half form the fons, which is a position as unnatmal as meomfortable.

Sitting lefore the tire, you wish to read a paper. You havo no licht at your back, anl must vither twi- yourself into a double bow lioot, or die forego a front posinge to the fire. You turn sume and raise yonr paper, when the light from the window between the chimmey and the comer shines through and hars your paper, so that you can not distimpuish a single word. This compels you to turn from the fire, and try again, noml nyin you are disconcerted by three cross lights-one at ono side, no nt the
other, and the third hehime; and these canses of discombirt are perpetcal, becanse incorporated into the very structure of gour honse. Both these evils this phan ohviates. It receives light and wind at jour hack, just where jou repuire them, relatively to your fire, prevents all cross lights, and is just the very thing for a conifortable read or chat. Your smoke ascomels through brick or earthen pipes in those trangles formed by the stairway partitions, of which hereafter. This plan also enables you to have fewer winlows; yet these can be large enough to light all your ronms efiectually-which is the chraper for the same surface of glase-as well as write at a desk without cross lights, or the sun shining in from several places, and is exactly what should be."

The dimensions of the rooms in the sixteen-feet octagon, on this story, are as fullows:

A square romm,	$16 \times 10=250 \mathrm{sq} . \mathrm{ft} .=28 \mathrm{sq} . \mathrm{yds}$.				
Tmo aljacent belrooms, ench	$11 \times 11=242$		$=13$		ca
A large parlor.	$13 \times 20=2281$	"	=31	"	
A connecting spare mom,	$10 \times 16=160$	"	$=19$	"	
be ${ }^{\text {l }}$ Iroom,	$12 \times 10=120$	"	$=14$	"	
"	$10.3 \times 8=8.5$	"	$=9$	،	
L, π half spuare,	$4 \times 8=92$	"	$=31$	"	
Stairmay, half of a mquarc,	$10 \times 10=50$	"		'	
Tutal.	1,231				

This is 13 square fet more than our 1,218 square fiet, lint the excess is mande up ly fratines of teet not comited, and comes so near as to prove the feneral correctuess of beth estimates.

To aseend liy thuse wimding stairs drawn in the stairease so as to land, ne before, on a hroad stair opening into the attir suite of romes, partitioned in the satme mamer, or in any other desired.

Bat inste:ld of iroing only fiour fect before we put on the roof, lat us go six or seven, since it will not eost many dollars extra to do so, and will give us as fine a suite of romens on the fourth story as need be desired.

Than such a honse, what carthly habitation could be more beantiful, more imponing, more conveni nt, or more confortable ?*

* Thase who preach that we should hate this life and its blessince in orler to prepare for another, would, of course, object to so enchanting a mansion, it making uy love the wurld so well as to be loth to leave it.

Lel us next estimate the roos in this sixteen-feet-sided octagon, both alisolute, and as compared with that of a thirty-two feet square house (Fig. 16, 40×42), with a rear hitchen and woodhouse to boot.

EIXTEENDFEET OCIACON DAEMENT.

Total in basement 1,210

Total of basement and portico $\frac{800}{1,060}$

THIRD BTORY.

Syuare room 256 "

Triangular bedroom and olosets . . . 127 "

Let us next estimate the room in a thirty-two feet square house.

Total romm	$82 \times 82=1,024$
Deduct entry	7×20-and two ohimneys 170

Its three stories and attic $=8.48 \times 4$, and a 20×20 feet cellar $=$ graud total net room 3,302.

The octagon and siuare, then, compare, thus:

$$
\frac{208}{33} \div 12=\frac{523}{252}-10=\frac{52}{28} \div 2=\frac{20}{14} \div 14=\frac{1 \frac{18}{14}}{1}
$$

which equals six-sevenths, or almost pounle tie room in the octaron wer the seflare-a part liy its shape, a part by its entries, and the balance ly the use of the whole basement, instearl of a part, as is usmal. Yet we reckom the whole of the garret room in the square homse, whereas omly a small part of it is usually conwerted to any valtallo nse. We reckon both garret and cellar in our octasom, to show how mwise to throw away room which can he converted to emls thus valuable.

Estimate of the not romin in house 36 liy 44, and kitchen. . Each room $18 \times 18=324$, less 24 square feet for chimney, and fourtern lost between the chimney and comers, as alrendy explaned, $=286$.

The four rooms on each story, and four stories,

$$
16 \times 280=4,476
$$

Kitchen, 20×16, 820
Gellar, 20×20, 400
Woodhouso, 16×8, 128

Fig. 10.

Less, by 954 square feet, than our sixteen-feet ootagon con-
tains. Fet there remains a ten hy twelve garret room over the kitchen, but this will repuire a deduction for stairs off of the kitchen.
lant suppose the buibier to be a man of meams, and to want a large and superb fouble honse, with a great abundance of room, and every convenience. He bilds an upright with wings.

$$
\begin{aligned}
& \text { Upright, } 32 \times 2+42 \times 2=148 \text { cir., nnd thrce stories, } 148 \times 3=444 \\
& \text { Wings, each } 27 \text { feet long, } \times 2=54 \times 2=108 \times 2 \text { storics, }=\cdot \frac{216}{708} \\
& \text { Woodhonse, } 27 \times 2=64 \times 2 \text { storics, }=\cdot \cdot \cdot \frac{108}{7}
\end{aligned}
$$

41. howland'g mlan of an octagon cottage.

The following drawings and specimens rendered by our engraver, Mr. Ilowland, lwth furnish an alditional arrangement of rooms, and may susterst others still to the readers.

The accompanying engravings represent the phan of an octagon cottane, desigued hy Messrs. Morgan and Brothers, architects, Willianshors, New York, for Mr. Willian ILowhand (our en graver), and which has been much artmired by builders for its neatness, simplicity, eonveniont arrangrment, and cheapness. Genthmen in the vicinity of this city are ahont building after the plan here specified, and, fir the information of suchothers as may wish it, we give helow the siecmicatose of the materials-the woml-work and the masemry, turether will the estimated cost of completing the same. The thing most likely to stumble tho reabor, in inspecting this heanifinl design, is, that so neat and well-finished a cottage can, nut of erood materials, be constructed so cheap. Dat ly attoming particularly to the comomical mothen' of inclusing, as well as the form of the buidling, be will readily see hrew it may be dome.*

[^4]
Carpenter's bibcification

Of the materinls and workmanship required to erect and finish a two-story dwelling for Mr. John J. Brown, at East Williainsburg, Long Island.

Dmansionh. -Thirty leet from the outside line of the building to the opposite outside litie of each slde.

All in the elear when finished.
Size of timber-sills, 4 by 6 inches; four inter-ties, 4 by 6 inches, 30 feet long; those to lirst story to have three locust posts each under them. First tier of beams 3 by 9 inches'; second tier, 3 by 8 inches; all placed two feet from centers, with one row of herring bone bridging to each tier. IIjp-rafters, 4 by 7 inches; jack-rafters, 3 by 7 inches, two fect from centeris; purlin-plates, 4 by 10 inches; studs, for the two partition-walls rumning through the building, 3 by 4 inches; joist, 16 inches from centers; the other stidding of wall-strip 16 inches from centers; the doors double studded. Do all necessary furring for mason's work, and dove-tail every fifh beam on each floor into the outside wall, and anchor them togother in the center. All the timber to he of whito pine or spruce. The ceiling of second story to be furred level.
lnclosino.-All the outside walls or inclosing to be of pickets or strips of common or refuse stulf, about four inches wide, to bo constructed as follows: After the sills are placed in their proper places and leveled, a course of pickets to be nailed on to the sills, about half an inch back from the outside line of the sill, then another course on tup of that; breaking joints with the first comse and on a line with the outside face of the sill (that is, projecting

[^5]Fig. 20.

half an inch over the first course) ; the third course the same as the first, and so on to the top, each course projecting over or roceding from the one next below.

Roor to project, and supported by brackets, as shown on elevation, covered with box boards laid close, joints broken; covered with single-cross tin, soldered and painted, two coats. A small

Fig. 21.

strip of plank is to be fixed near the outer edge of the roof, to form a hollow, lined with tin for a gutter, with all necessary threeinch tin leaders to convey the water to the cisterns.

Scurrie.-lit and hang scutlle two and a half by four feet, seelured with chain and hook.

Window Frameg, Sashes, etc.-For number of frames seo plan; and size of glass left optional with tho owner. All box
frames, saches, oue and a half inches thick, double-hung with weights, cords, and puileys. The first story to lave patent brass fastenings; windows glazed with a good quality of American glass. Four windows in the cellar, three lights in each, $\mathbf{1 0}$ by 14 inch glass; sashes hung with butts and secured with buttons. Outside hall door glazed the same as windows.

Fig. 22.

1ir. 23.

Prazza in front as per mevation. Wack stoop as jer plan.
Corsme all arimud the house, with backets as per clevation, with an olverpitory on t"p. That portion of the roof' required for the flowe of the onvervatory made noaty level.

Finors of first and secom stories lad with merchantable mill worked white pine plank, free from largo or loose knots, sap, or splits, tongued and grooved; laid in courses, well mailel, and heading joints neatly smothed off.

Thimman.-All the deors and windows trimmed with single faced architrave, with back mould, in all live and a half inches wido

The windows trimmed on neat sills; and on the outside with four-inch plane architrave; with block under the sills as per elevation.

Sisk in living-room of suitable size, mado perfertly tight, and doors and shelyes underncath, and waste to cesspool. The pantries shelved with four tiers of shelves each. Four dozen clothes-, hooks put up in the bedrooms and closets, as the owner may direct. Put hard wond sadilles to all doors, and base block or turncel pins where necessary behind the doors.

Doons.--Outside doors two iwhes thick, four panels each; double faved, with glass in the upper panels; the lower panels with mouldings. All the other dours, exeept those of the pantries, one and a quarter inches thick, double-ficeed, four-paneled with mouldings. The pantry dours single-fiaced, to correspond with the room doors, the other, side head and butt. The front door hung with three three-and-a-half-ibeh butts, and sceured with two barrel-bolts and a suitable sized front-door lock, with night-latch and two keys; the back door hung with threc-and-a-halfinch hatts, and sceured by a seven-inch rim-lock and two barrelbolls. The first story inside deners hung with thee-and-a-halfinch butt, and secured with five-inch mortice-locks, except the pantry and closet doors, which are to have reversed beveledlocks. Sceond story dowes hung with three-inch hatts, and secured by suitable sized rim-loeks. White mincrai-linobs on first story, and dark colored un second stary. Outside and inside cellar doors made in the uanal manner, hung with large-sized strap-hinges, and secured with har-hooks, etc., complete.

Mantifs.-Neat marble pattern mantles to all the fireplaces, painted such color as directed.

Base in all of first story nine inches high, with ovilo moulding on top. Beveled hace in second story seven inches high, ath scribed down and well litted to the flare.

Srans leading from tirat story to secome, as per plan, put up on strong carriages, moulded and returmed nosings; three-inch moulded rail ; one-and-hree-quarter-inch fancy turned bahusters; six-inch wewel-level rail and balusters at the top; the newel-rail and halusters of St. Domingo malingany, rubbed smooth and varnished three coats. Geometrical panel under stairs; strong stairs
to cellar and soutte in the n!tial way. Cellar stairs ceiled up tight with p:umed downs mallomeath.
l'suy, ith G fiet of mill-worted white pine, tonsued and grooved bands; the insinge prepared for plastering ; four-pabeled door made, hume, and sembed in the usual way, one window, 6 by 10 inch glacs, six lights, humr with butts and secured with button.

Panting.-Paint all the wood-work, both inside and outside, with two coats of linsed oil and pure white-lead paint of such color as the owner may direct.

MASOX'S SPRCHFICATIONS.

Excaratise.-Facavate and cant away all the earth for areas, eesepeol, sink, cictran. ate, and lewel aromen the hemer as directed. Gate away all the rublith that may be made daring tho pregress and at the comphelion of the jub.

Srose-wath.-.. Start char wall two fert below he loothom of cellar, and earry the smue th the moler sile of the first tior of

 Bhere stome stops to whlar is the watal way.

 phace. Chimbers Copplont five fiet six inches atove the roof whin had hack atwl hown ane cap, ase per olevation.

P'astemsi.- Lath the partioms. and plater the whole of the
 the flow ; the first story hand fininhed; the socoms skimmed for Whatew ahiner. The omside walls will hot need lathing. l'rivy dahed and phatered same as second story.

Comas.- - build cisem in gard six fect in diameter and eight fert olerp, of hard brek, cight inches thick, laid in cemont and comuled tipht; archerl on top with bue stone neek, and eovered with wate to cersepul.

Cesspoos, in yaril, cinht feet deep, three feet diameter at the hottom, and one foct six inches at top, stoned up with broken stone, and coverol with perfarated flaguing.

Sink.-I3uild sink four fect diameter, stoned up with broken stone, and squared up with three courses of brick at the top.
'The outside of building to bo stuceoed in tho best mannerblocked into courses and colored in imitation of stono work.

Now the whole cost of such a hrouse, as is here specified, will not excecd elecen hundred dollors. Nuch more than this sum muy be expended, it is truc, if the owner is so disposed, and some builders have estimated that it might be done for less.

「Another plan of constructing walls of wood, and which we think rheaper and letter, is to get threc-inch hemlock plank, and set them edre. wise one upon another, and putting the elges together hy dowel-pins, made of white ash or oak, an inch in diam. cter and alwut cight inches long. The cerners are framet togethor and pimued with drnw-hore. 'Tear in pieres a tea-chest and you have the plan of this mode of building. These planks may be of any widh from six to cighteen or twenty-four inehes. It certainly takes grool lous to saw picket or marrow stuff from, and have it hold together to ece it to market. The use of refuse stull is poor commeny. If this were sawed into plank, threr-fourthe of the sawing would be saved, and one-lifith of the stulf would atso be saved, which is cut iute, sawdust ly the process of ruting the phatis into inch boards. Besiles there inches of solid timber, in the fiom of a plank, is stiffer than a wall of slats four inches wide nailed together.

Agrain. What is tho use of sawing solid planks into strips, and then usiug nails and lathor to fasten then together again, with a loss of ome-lifith of the timber in sawdust? A plank howse ran be lathed, and plastered, and firished for less than it costs to finish the slat-work wall, as it takes a greater quantity of murtar to level up and fill the crevices in the slat-work. The writer has tried loth methods of building. and knows that the plank-wall takes less lumher, can be put, up faster, and dors not cost a single nail, except to lath. The outside can be covered with clapboards or stucco on lath, to suit the taste.]

42. deschiption of the author's mebidence.

Allusion has already been made to the residence of the author. For two reasoms it werms proper to give its deseription a place in these pages-first, because those studies which have eventunted in this work were instituted primarily to erect this very house; and, secomdly, lecause an account of it will call up many points alout builling, uses of rooms, cte., which can be presented in this form better than in any other. It is, moreover, intrinsioally worthy such a place.

To begin with the lower, or cellar story. My house is located on an oval knoll, dictsing off the top of which fupnished me with nearly all the stomes, lats: and small, used in putting up its walls. All my collar, therefore, is aboec ground, except two holes, C L and M, alomsite of my ior-house.

My ice-honse connists of two stones-the upper one for ice, the lower, a room kept cool by the ice and its drippings, a preservatory for lienpinis finit, butter, exres, fresh meat, fish, bacom, pies, ete. I took a purfictly sound and hard apple from it in Atrinst, stomed the fill before, and kept it till December in a warm, bad place, yet it retained its ilavor perfectly. They havo heen kept two years, and graper one. The melting ice keeps this room at a fompronthe just alowe the freezing print, and surrounded ly stides amd cohl air, so that its preserving powers are remarkable. Its strmeture is simple, and as follows:

Erect stuls as for a wall. lath and plaster both sites, and finiol the outwide as you do your house. This furnishes a place
 Irofeswor hilliman, to tan-hark, or exen chareoal. In the plastering use a liftle cement. Then ereet, another set of stmes, first havine mailed on gour lath hetore they are mased; then rase and fatem them, and phaster fom the iavield, or beteren the stme; this gives two comfinel ait whambers. Then lath on the inside of these stuls, and phater, and yon have three airechambers all around your icc-house and preservatory foy hoth stories. Next Jay.your floor for the bothom of your ico-house and top of your preservatory, and make it metcr-tight, by canlking, or plastering with eement, or in some other way; and having this floor descend a few
inches from the middle each way, so as to carry off the water, and
Fig. 24.

BABEMENT BTORY OT TIE cOTAGON HOVAI
resting this floor on rows of studs below, which serve both to support the ice and fasten shelves to, and to the outside row of
studs lath and pla tur with cement, so that the ice drippings may run off bchind this imer wall of the preservatory, or between it and the two rows of studs alowe deserihed. Your preservatory is now perfectly dry, ath of one temprerature the year round. Its bottom should also be double, so as to be dry, yet let water pass under it. In mine the ice water is gathered at the door, under Which it runs thrmeh a lead pipe, bent upward like a new moon, which allows water to pass out, but prevents air from passing in. It passes into this cellar C L , and my milk cluset M , which also has two storics, the lower for preserves and what else we want to keep, yet do not think worth the trouble of going into the preservatory, and the top for milk, having two floors, which admits the cold air up into the milk-romm, yet prevents dirt from dosecmding, hy the lower one catching it.

All required to make this floor is, having lad your floor tim: bers, nail a flow to their muder side, leaving a space an inch or two wide at ont side, and a shelf over this crack will prevent much dirt from greting down, and then mailing another floor to the top of these timbers, having amether opening on the other side of the flowr.

If fir mith; the wh air paing up from the botom story, inte whith the water russ fiom under the preservatory, both having shlows. A like arrang ment at C L gives two large cellars, one alowe the othere oll a like princeple.
The chtrame tomy prownatory is with two stairways leading to it, rine form the side thand the kithen, fir the cork, and the other larger, fir the gatemer to take down barrels of beef, fruits, nod the lareer atiches. Thus all the cold of my iee is saved, and cools fire romen, the prownatory and the cother two dombe-storid rooms contiguous, Eucu the eobld which eseapes in oproning the greservatory dur gases into the:e rome, bexides conling the
 S, for kitchon stores, both of whith are fitted up with shelves. Now I suimit whether here is not a plan worthy of imitation (mbess it can he improved (m) in any howe whose owner can athen am exim $\stackrel{*}{*} 100$, the uthost it need cost. And how soon will it quit cont hy baging buter, erers, frint, ete, when abundant and cheary, and keeping them as good as new till scarce and I gh,
and then sclling, to say nothing of tho luxury of having frat, grapes, and perfictly swent May butter the year round, for they experience no sensible deterioration in flavor. I also keep in it the juice of my fruits, which dues not ferment, or at least scareely perceptilly, and is therefore newo wine, all but the intoxicating part, caused by fermentation. My dietelic doctrine is that man should live mainly on unholted wheat bread and fruit, or its juice, caten as wo cat bread and milk, and that this fruit juice should take the place of water. At all evente, it is the daintiest of lux. uries. Thus, the newly-compresed juice of the hlack raspherry is most delicious, and in this preservatory retains its delicious flawor, which fermentation would destroy. It is kept here for monthis, as is also that of other fruits-the strawherry, cherry, peach, etc. On no account would I do without the luxury of this - preservatory.

Ju the closet \mathbf{C} one angle S carries up a stove-pipe hole, made out of that very material described fir making the wall, amd drawing "p, as you filled up, a round stick the size of the flue desireda chap way of making chimness, and as good as the very best. A wash-heiler is stationerl in the alyoning rome, W K , having a eistem, C I, lo by 10 -it can easily be made larger or smallerwhich receives the surplus water from the cisterns above, and the roof having at one comer three statigh walls, one of which extends fiom bethom to top of the ristem, made of this same wall material, or of hrick, and ecmented boll sides, having holes at tho bollom. The other two are a fiot or cightectinches high, and say a foot on each side of the other, also cemented, and the spaces betwern them and the high wall filled in with chareoal and conrso gravel, so that the water rising to this low wall runs down through this filtering chareoal throush those holes at the bottom of the hish wall, then 1 p thongh chareal and roarse gravel on the other site, and chus dombly filtered, makes the very best drinking water in the winh. Oiserve, ton, that it joins on the cool milk closet M, and hence imbibes consideratle coolness from the ierewater. If I had ever so good well or sping of water, 1 should want these cistems, becanse doublefiltered rain-water is preferable to all other water for drinking and culinary purposes. Observe, also, that this water gets a double filtration in the cisterns above, before
Digitized by CoOgle
entering this, or four filters in all. And how murli more handy to tum a fancet and draw water direct into a pail, than to raise it from tho will, or fiom a cistern under-ground, or below where you require it for use. 'Jhese remarks apply doubly to the cistern at the other silde of the hemse, near the kitehen, K.

At the left of this cistem is a dark cellar, C, for sauce, or whatever you wish to keep from freezing; rool in summer, because exchulend on all sides foom the sm, and on the side joining the two-story collar, (: l , and the cistorn on another, and free from frost in winter, leseiles being ensily aired by its two doors. And this ating of cellars is all impertant, for, otherwies, decaying vegetables infect and posism the rooms above, ly finding its way up themob the flow, Still the main berly of the farmers vegetables should be stored under his bern lhow, so that he ean drive his cart to the hatwinay and dump right into lis $\mathrm{I}^{\text {witato, cabluge, carrot, }}$ rutahage, bere, parmip, and other eellars or bins.

By the sine of this is another room, L , which may lo used for

 and gint whore you want it, wheros the gatret is very bad to get to atal jrom. Wrany other wac cam be made of it the propridor dhomers. Perinijs the one who locks up, answers the night-bell, etc., might shop in it.

Butwen it and the walr-room, and at the end of the cistern, is n storerom, S P , sme 7 loy 10 , just the place to put family
 amb Ebue damors. A small dwet ofl the apprown, from Whichalan atats another stank of chimmeys, completes this, the murth half of my hase. Inow it womld suit the reader I care little, simee it suits its phenmer andomer to a charm.

Next comes the entiv. It is in this very edlar story, where ewry entry ought to be, and, hence, dows not sepate the main roons alonve, yet gives every cod any entry secures; of which more hereater.

It comsists of two parts. That line ruming nearly through it, and terminating in (wo octagomal pillars, is the central wall of the house, ruming from loottom to tnp, while the two walls on each side of it are for this story only, and are eight inches thick, while
the midule one is a foot, and huilt like the outside walls. Tremendous pressure comes on parts of it, yet it stands. $f^{\prime} E$ is the front entrance, where strangers will naturally apply for ingress to the house; and the room IR IR is for a common receiving-room, hat-stand, reading-room, ete., and that pillar in the entry has an elk's head and horns, and some decr-horns masoned into it, on which to hang hats and cloaks. From this entry callers are then conducted up into the eenter of the story above, and taken into dining.room, drawing-ronm, the bedrooms still above, or wherever it is desirable for them to go, in accordance with their station and business.

From the other end of this half of the entry another flight of stairs conducts from the kitchen and back entry up to the same landinf-place in the stairway alove; of which when we eome to that, story. Under these two flights of stairs, mud aceessible by a door in this center wall, is just the place for conl-and coal is the only proper material for heating houses-of which, however, in its plare. Aljoining is a place for the furnace, marked F , and manufieturing gas out of cheap nil, soap- fat, ete., which is far cheaper thag common gas, casily malle, even by a boy, and probably the che:apest and berst way to light a lonise.* Or the plice marked G, as designed for gas fixtures, can lee used for bathing, it being next the eistern.

The other side of the eenter wall is a through entry; serves every purpose of one, and is just where you want it.
lassing through this entry we euter the kitchen, K , the great stomach of the herise; having a well, from which water is drawn culvile, and also into the kitchen itself, and the other side of this kitchen is watered from the cistern by turning a fiumet, and a lead pipe from this cistern comeets with the range, J. Two pantries, $\mathrm{C} L$ and P , commect with this kitelem and one another, and ono with the alloining room, W D, a workman's dining-room. At the back end of the closet, C L , which is 5 by 14, wide enough for two rows of shelves, and of barrel under them if desired, and a passage-way besides, is a dumb-waiter, which goes from the bot-

[^6]tom to the top of the house, serving every story in its passagea contrivance worth $\$ 100$ to any $\$ 1,000$ house, proportionally to a more costly one. The general oljection to them is that they carry up all the bad odors from the kitchen, which in this instance is prevented by the intervening eloset. How many steps must this satve in going up and down stairs in the course of a year. Through a speaking-tube near the dumb-waiter a communication is opened from the kitchen to the upper roons, so that what is wanted from the kitehen may be called for and sent up, and what is wanted from above may be sent down, and thus nearly all the ruming up and down stairs saved by the dumb-waiter. Nor is it at all in the way, from lottom to top of the hunse.

The kitchen comects with the workmen's dining-room, 15 by 22, and this, with their siting-room, W S-no menviable placo to spend evenings, and where they can amuso themselves without straying to the groshop or other objectionable places.

On the south side of the house, under the portico, and corresponling with the ice-house, is the green-house, the advantages of which 1 will not now diseuss. Sullice it to sily, that $\$ 100$ to $\$ 200$ is a fiar allowace for it, and no $\$ 1,000$ loone should be without it. That sum can scarcely be spent upen a homse clsewhere to as great an inerease of confort. Here the mistress cam have her flowers and the mater his grape-vines, and the waste water can be comblucted from the rooms immediately alove, as well as from the kitchen, th the grapo border. Without aglass-homse, latger or smaller, I comsider any house very inperfert. Its advantares have only to be known to be generally aldopted.

A back stairway in the angle between the hitchen and men's dining-rom, hasing an oven under it, leals up into a like stairway ahove, and up into storics still above. This completes the Jower, or ground, ur rellar story, which is eight and a half fect high in the char. 'Those anghlar stairways, erected on the anges of the ice and areen honsis, had from the ground to the top of the ice and greon houses, and an offiet, hoth for receiving in-thero being an ontside entrance to the ice-house here-and fir landing from and entering the carriage, completes the main features of this story; which is submitted not to huiders and men merely, but esfecially to women and practical hourekerperg, for such
approval or criticism as they may award it. That it can not be bettered is not asserted, but that it is fir superior to any bascment arrangeniont before invented is maintained. And mark to what extent the octagon form contributes to this end. Building reader, is not this plan worthy general adoption 1

43. tieg main or parlor btory.

IIaving now described the structure and divisions of the lower or work story, we proceed to examine the parlor, or main living story, and will ascend either by those outside stairs by the ice or green house, by the inside back stairs over the oven, or throngh the entry from the lower front or back doors into that great central stairway, marked S, which is 12 feet square, and yet is rendered octagonal by cutting off its corners, which are used, one for a dumb walter, marked W, the other two for ventilation, the foul air passing between the flour timbers to the walls, which cross them in the story alove, up to the upper story, and out just under the eaves. Several like angles of closets about the house are also used for ventilation, so that every room in the house is ventilated perfectly.

While the ground story is exactly adapted by its position for work, storage, etc., this story is deculiarly fitted to hecome the main pleasure story of the house, first, because just far enough from the ground to prevent all dampness, and high enough to catch any summer breeze nflunt, nod yet not too high to render ascent to it laborious-- he lower story being cight and a half feet high. Being surrounded by a portico, promenaders, at any hour of the diay, can walk in either the slade or sun as suits them, or walk round a covered circle of some 300 fect-the house itself being 250.

Members of the family, and familiar acquaintances, will prass up those stairs figured in cut No. 24, alongside of the grean or ice houses, and, passing along the portico, enter into that triangular entry, in the angle of which is a place just large enourh for a hatstand, and lighted from around and over the door, and pass thence into the sitting, or more properly, drawing-room, marked $\mathrm{D} r$, or into tho parlor, as occasion requires; while strangers will ring the bell at the story below, and pass up the stairs into the great
central stairway, S, and thence iuto parlor, drawing, dining, or amusement rooms. This arrangement gives us every valuable end attained by an entry, without either taking up much room, or

Fig. 8 .

PAPLOR ATORT OF AK OCTAGON DOURE.
separating those four large rooms, each 22 by 39 , less those corners, C, taken off for entry, stairway, and closets. Each of these rooms is larger than one story of an entire house 25 by 28 , and
contains over 700 square feet, or some 75 yards of carpet. Now unfold two such magnificent rooms into one-and they join each other lengthwise, so that, thus thrown together, they are almost square, or 30 by 44 -and what a place for a large assembly, a minister's donation party, or any social gathering on a large seale ! Now it is submitted whether such free and cosy meetings of neighburs and congetial spirits can not be turned to great practical purpuses of mental profit as well as pleasure. Should they not be universally adopted in this country? And what a place for such gatherings!

If two rooms are not large onough, throw open the dining and amusement rooms, and you have four spacious, magnificent rooms, embracing an area of over 300 square yards, and-please observe this beautiful feature-having four side rooms udjoining for dressing or retiring rooms.

Reader, even though you have made the tour of Europe, atteuded levees in the mansions of the lords of the Old World, did you ever see the equal of this suite of rooms for entertaining large partics?

Large suppers, having, however, much less reference to physical than mental repasts-to good enting than speaking-at which many toasts, sparkling suggestiuns, witty effusions, short, pithy, racy, eloquent, convivial speeches will constitute the chief attraction, and at which woman shall contribute as much as man, or improved editions of our public suppers, will yet be abundant; and how infinitely pleasurable and profitable such mental, and moral, and social feasts might be rendered! And what rooms these for such purposes! Three rows of tables, nearly firty feet long, or four rows thirty-five feet, would seat one hundred guests, in the dining and amusement rooms, and as many more in the parlor and drawing rooms, with abundance of side room for wardrobers, conversation, and a thousand uses requisite on such oec:usioms.

The late Gardner IIowland, of the firm of IIowland and Aspinwall, large shipping merchants, and owning the California Isthmus route, came with his daughters to sce this house, and on entering these rooms, a dnughter exclaimed, " Oh , pa , what splendid rooms! I wish we had some as good!" And well she might,
though he was worth many millions, and hand just expended, in adilitions, alterations, and repairs; upon an alrealy costly mansion, about as mach as this emtire honse cont.

Il anse ulserve that dows at the inter ends of these rooms connect these fuur romm-all by follinu, domes, if desired. Access is also rendered easy from each to cath and all, through the stairway. Ohserve, aloo, that here are eight harge romes, all wfoininy each other, and all perferly aceessible, and secturing all the advantares of an entry, without any of its disalvantages, which are great. If an entry divided them, only half as large a company could be entertained as now, for an intervening entry always breaks the spell of a party; yet difierent romes, opening directly into, earch other, preserve this apeil, or the wity of the assemily, whereas an inte: vening entry womid make teco companies. Those who lave not thought of ohsisted on this point, will uot duly apperita it, or realize the cwils of entries. Yet these roms merh in entries-liest, beemue the entry in the story helow serves ceory replinition of a thromel entry or hall; and, second, because the boration of the staiss renders the centry only an "p-rned durn conter, whereas, in most hage homes, the hall rams through tho howse, lowh from side to sifl. ano from bettom to top.

The apparance of this stairway is really magnibent-lighted
 fomal in furm-a far mere beautifal higure than a square or hexirwh.

Look ayain at how completely it vontilates every large room in every story. Howewe het howere litto air may be stirring of a han, sultry day. open a window and the dow in any room of any story iato this contal vemtilater, and up rises a strmone emb-
 or domity of the air helow than at the height of the eupla. Besides this glase dome at the top of the cumba, each of its eight sides hats a widhw, out of which this air passis.
'To practial hansikerpers we sulmit one other paint-the grater ease with which work can be done in rooms thus arranged, than in rooms u-vally arramed. For example: if you wish to go from either of these eight roons to either story, above or below, a few steps takes you to this central stair-
way, ly which you nscend or descend; whereas, if its entries and stories were as is ustal, if you wish to go from the dining or ammsement room up stairs, you must first go, say from the center of the room toward the back-entry door to a door into the entry, then turn a sharp angle to the left, and go clear to the foot of the stairway near the front door, and then turn square and come lack again, while ascending the stairs, only, perhapa, to turn square round to the left to go right back toward the fromt of the bonso to one of the front ujper romis. But by this arrongement, three or four steps bring you from cither of these rooms to the font of the stairs, aseending which, a few more stcje take you to whatever duor aliove you may wish to enter. So, also, if you wish to go from cilher of these rooms on this story to any other, you pass straight from where you statt, through this stairway, to your place of destination.

It is now submitted whether you can not go from room to room, and story to story, about this house, with less than half the steps reguisite to get from room to room, and story to story, in other houses as usually arranged. Observe, here are a great many rooms, and all hently to achother. In short, is not this centrulity of the stairway ineomparahly superior to ordinary entries?
lint, when these four side romens are not wanted for entertaining very large parties-yet quite larere parties can be entertaitiod comfirtably in the ambement-room, appropriated expressly to ordinary free and cosy social gatherings, with or without amusements, thus entertaining eompany well without throwing open the parlor, or exposing its carpet in mudly weather-they can be occupied proftably thus: La for a libary and room for minerals, shells, ete., including some portrats; I for "a prophet's chamber," or spare bedroom, whidh, adjoining the library and also amusement-room, is well lecated for this purpose, and in summer is on the cool side of the hoonse.

On the somth, or lower side, are two other rooms, W S and F', the former beantifully loeated and perfectly adapted on a winter sitting. room, and F to a winter slecpingroom. Observe, it has no ometside door, so that cold can enter only through the winthms, there being two doors between it and the outside dours. This will render its temperature much more uniform than if it had an
outside door, and sitnated almost over the lirerom, it can be rendered as warm as you piease. Is not this a luxurious arrangemont for cold days in winter, when an outside, or even an entry dour, will admit so murh chilling blat?

Both these rooms are abo over two like rooms helow, so that heat asceluling through the flow will help to keep the fect warm. I never like to occupy the first floor, either in summer, for it is more or less damp, or in winter, for cold will creep in, and prass up to the floor timbers and along them to crevices in the floor, whereas, lig this menle of building, mo cold air can eome to these flow timbers, and the heat ascends from the workmrn's sitting and dining rooms below, so as to krop the feet comfortable. Ilease, realer, reflect on the importance, as a means of health and luxury, especially to cold-blooded persons, of warm foors and feet in winter, and the great diseonfort and iujury to health consequent on rold thoms and feet.

Ohserve, again. that often, in fall and spring, when the weather changes mpilly from warm to coht, an outside door, often ofeneal, chem rembers a room momentable, so that you have to start a fire, wherats, in this case, no ontride door admits cold or emits heat, so that it refains on tifiorm tompercture. For a like reason it heses mot beome so hat on at hot day in summer, especially as nily about ane-dhind at its wall is at one time exposed to the sun's mys, and this only lualf the day.
This onifirmity in the temperature of a room is a most important print. Name who have not cyperienced it can realize bow impertant, or how comfintahio. It is again submitted whether here is ant an alminable whater loxury, to which every timily might treat themorlves.

The above allusion to" freating ourselves to luxuries," requires a little further elneifatim. I moer hired a shewd hishman, who had no change of linen, and that all rass and dirt, and without coat or vest. Sct to work with other frishmen, they soon began to tense him alout his clothes, to which he replied, "If I were able, I would treat myself to clean linen every day in the gear, for nothing I can aine myself is ton good for myself."

Apply this to houses. Should they not be furnished with just as many means of comfort, and even luxury, as their builder is
well able to pay for? Yet how often are thousands spent on out. side appearances and inside ornaments, which afford no solid comfort, only foster pride! whereas, a moiety of this extra expense would ald to the real enjoyments and luxuries of its occupants overy day, as long as it stands. And it is further submitted whether this octagomal form, these porticoes, these sumpluous center-rooms, and these convenient side rooms, together with this arriy of contrivances, do not throw far into the shade even the best and most costly styles of modern domestic arehitecture?
'This general plan was set forth in the author's " Ilome for All," in 1847, and is here carried out with some modifications.

It renains to add that the chimncys are carried up both in the middlo wall-made fourteen inches wide at one end for this express purpose, as represented in the drawing, and also in an augle in each of the four closets, , out off from each of the four side rooms-made as described in a former article, hy drawing a stick the size of the flue along up while building the wall, thus leaving a luile after it.

As cipht feet was too narrow for an ice-house, it was made sixteen feet; and as the portico is seven and a half feet, the other right and a half feet outside the portico, and over the ice and green houses, are occupied by stairs, for passage up and down or:sivile of the house. In case of fire, it is desirable that occupans can rearl the ground by an outside deseent, in case the inside stories should be enveloped in flame. Visitors, and others, too, will often pass up and down, to the roof even, without going inside. These stairways, then, serve to cover this irregularity, and to give a stairway outside of, and without any way interfering with, the portico itself.

As to my own house, lann quite sure it will never burn; because many of its inside walls are made of lime and stones.

44. upter atomies.

To this story there are four nseents from the story below, namely, one, the principal, in that central opening figured in the previous drawing, and marked S in Figure 26, the landing-place being at R; the second, by that back stairway, also figured in tho
preceding drawing, and right under the back stairway figured in this engraving, having an entry two and a half feet wide comecting it with the central, anil a door-window for passing out upon the portico, and two outside stairways over the ice and green houses, thungh, except for looks, there is need of only one; yet they help to give preportion to these projections caused by the ice and grecu houses.

The aseent to the story still alove is also figured in the accompanying engraving, at S, yet only one of the two starting places is really neeled. The oreu space A tramsmits aboudance of light from the cupola above, the top of which is glass, to both the stairway and those dark bedrooms, $\mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{O}$, which have a grodsized window over the door, and also a skylight, made by inserting Crystal l'alace glans, which is half an iuch thick, and will bear to be walkod on as well as beariss-into the roof, at K, L, M, N, nond a beacd across the cormer of the upper story, and a pane of eommon ghase between the two stories allows light to pass down behind this lomad into the midde story, or that above the parlor. Of these eight interior roums I think tho world; first as dormitories, cool in summer and warm in winter, inareessible to musquitere, yot easily vemilated by an opening into the coiling above, the air pasing alung betwen flow timbers, and so out into tho stairway.

As a phace fir a priet, retived study, being lighted from above, they will he far more phasant than any side light cen be, and several times mome pewatul. They will also serve the very best of purposes fir fowers in wimber, or fir apples or what stores may be reguired to be hepl from frecaing, yet in a cool temperature.

But it is for these two uses I think the most of them-or for slcuping, hecau-e of so unigion a temperature-not hot on going to hed from the day's sum, fir it can not rach them, and eool toward morning from dew or rain, but the same, morning, noon, and night, and in winter as in summer.

The other special nis is fior nu anthor's studio. Writers will bear witness that in that "llfourerfil exercise of the whole mind requisite for writing what is fit, to be read, the blood forsales the extremities and slin, and mounts roshing to the head, leaving all the outer walls a prey to cold, which, in aldition to severe men-
tal exertion, is too much for any constitution sufficiently susceptible to write well. Most awful havoc have my own night writings made on my constitution-having alinost destroyed it.

UPPER ETOERE OF AN OGTAGON HODAE
Most horribly, almost as if actually dying, have I felt by the hundred times, on rising in the morning, after having written most of the night, and retired cold in feet and skin, but hot at
the head, having lain for hours before the equalizing circulation rondered me warn enough to sleep.

Then why mot write liy a fire? it may be asked. I will not stop to show why, only to say that my own experience has most imperiously reguired just such a place for writing.
"But why write nights!" I believe there is some cause in nature why from sumset to midhight facilitates good writing. At all events, freturing has rondered my mind spectally active at that part of the twenty-four hours; and 1 am most glad of exactly such a place as this in which to write and read; for the principles just stated apply measurably to reading.

The size of these romins is between eleven and twelve feet sguare, sawing the eorners cut of by the stairway, and used for a door-winduw.

Ohacree, also, that five rooms corner nt. K, and the same at I , M, and N. Honce, ly plarine the washstands in the inner cormers of those small bedrom chasels, one lead pijue will carry off all the wahbenater from these fire remes in hoth stories, one pipo serving ten rooms, and one pipe also binging frosh water to this same tern-a point of cormomy I resperthally sutmit to criticisu.
"Bring it from where" yon ask. from cinterns built in the upher pate of these small efosets, and filled from the roof, having that filterine aparatus ahamy deseribed. Cisterns in the tops of houses are most desiable; first, heramse they save carrying washowar u! tu dambers. which rombers it searee, and thes retatds chambine.. A matance of water in the slepping rooms is mont desimble; amb this phan furnhes it.

One of the we cistoms ahon commetis with the repper boiler attarhed to the kithen range, atd this deserending cold water fores up the lu, water the sherixes a!ose, so as to give hot and coll werter the coch sthry. Amh the lerge siee of the roof will rive, prolsably, all the wator ever watom, especially as the cistems are so commeted that when cither is filled its surplus runs over into the next, ard so con till all are filled above, and these rom over into thone large lower mes below, already described.

Uhserve, asain, that these cisterns are over closets, or built in the $u^{\prime} p^{2 r}$ rime of elosets-room not needed, nor likely to be used for any purpose whatever. Most masons, indeed, lath over clos-
ets nbout seven feot high, and thus that vacant space is shut up entirely, rather than finish it. But in this upper story, I mako the closets only six feet high, which leaves the cistems four and a half feet decp; and about equal in size to half of an eightfeet square, or about equal to six feet square, or holding ahout one hundred and fifty eulic feet of water. Yet it is easy to mako them larger or smaller, at pleasure. I prefer smaller ones scattered in the four quarters to a single large one, and those more shollow than deep, because the pressure is less.

The two upper storics are alike, excepting the cisterns in the upper, and the bath-room, B K, by the back stairs in the one below it; so that one description and drawing serves for both.

45. filtration.

Filtered rain water is the very best drinking water in the world. Lime or hard water is by no memes as healthy as soft. It accelerates the action of the alimentary camal, and is prolific of sumbmer complaints in children, diarrhea, cholera morbus, and cholera. It was correctly olserved in the cholera times, that only hard. mater divtriets aufered with this dreadful malady. In the hardwater portions of Fishkill this disease made awful havor, whereas not one case oce nor in any other soff-water district, as far as I know. I consider wrof water a sure jreventive of most furms of bowel complaint, and filtered rain water gives it.

These filters are easily constructed within these cisterns, thus:

Let c represent the cistern, and the little square marked in it stand for the filter, to make which, lay up a box of brick, mado
tight at the sides and on top, and comented inside and out; but the two ends, e e, mist be laid up open, so that the water ean pass through the filter into that smaliest phace marked f, which is a deposit for the water after it is filtered. This should be but small, so that it may pass through the filter while being dianen; for if this place holds a gallon or two, it will have to stand in this depot from the previous drawing, and therefore not be fresh. The walls, $w v$, of the filter should be made water-tight by brick laid in cement, and plastered outside and in with cement, and the top also made water-tight by a large stome, the size of the filter, or brick laid in ecment, so that all the water must pass through this filter in order to reach the fiucet.

The filtering apparatus itself should be constructed thus: Set charcoal on fire till fuirly hurning, then pomad fine, and lay alternate layers of fine, white, clean sam, and charcoal, laid not honizontally, but diamonally, bergimitg at the lower corner, under the faucet, and laying them at an angle of 45 degrees, more or less, so that the water must cross these hayers as much as possible.

Charcoal founded fine will answer without the burning, but is better bumed in an iren kettle.

Those who have mo such filter in their cistern, yet would like to obtain this fittered rain water, or to filter other water, ean obtain of John Kedzie, of Rochester, N. Y., the very best filters there are. He invented the method above described, and furnishes fihers ready for use at $\$ 5, \$ 750, \$ 10$. They will last an ago, if repacked abut exery five years. The above sums, sent him hy mail, will procure by return express one of these healthpromoting lonsures, worth in every fanily a humed times its cost, and saving it, in most families, many times over, in doctors' bills alone.

Having thus, as it were, gone aromud with the details of these stories, let us look at them more in the argregate.

Each story gives eight large, sthare-comered rooms, each 15 liy 9 , lighted by one large window-fir better than two smaller ones, for then there are no confinsing cross liehts-always bad for ejes, and preventing clear sight, besides anding greatly to the cost of the rom, and to uncomtrolled air-holes. One large window costs one-third less than two of half its size, gives just as
much light, and that all in a body, and is cvery way better and chenper. We have already given a few common-sense principles about buidding, some of which will apply to large and small windows.

To these two points in these stories special attention is invited. First, every square room, itself large, has an adjoining room for a hed, or for retiring to change dresses, or what you please; and I have been in hotels enough to know that these ante-rooms are very great conveniences, and useful leeyond what any one could imagine, who had not experienced their value. Each is also lighted; and the small rooms have good places for beds, windows, and comers, and all clearing the closet doors. The size of these rooms comes well for carpets, namely, five yards wide and seven long, so that no waste would occur to yard-wide carpets, whero the ligures also cccupy one yard in length, which is common. The bedrooms are ten feet square-not quite so good, but drugget two yards wide will cut and stretch so as to waste little, if any.

The other point is closets. On their value I will not enlarge, but ouly say, live even in a poor house with them, and then in a good one without them, if a good one without them were possible, and you will want to move back again. Let practical housekrepers attest their value. No room is really tenantahlo without one, berause you must have very few things at hand, or else they must be under foot, or tossed from chair to chair, and mantlepiece to chair, in one Babel of confusion. "But can they not be put into a burean?" it is asked. And what is a bureau but a closet in the room, instend of adjoining it. Yet how insignificaut is a bureau compared with u closet! In the latter, fine dresses can bang unrulled, and several times more of them. Yet hoth closet and bureau are desirable, if they can be affurded. And one closet, while several times larger than a burean, costs less by half, hesilles being every way better. Now please observe how beautifilly our plan provides for these closets. Every room, exeept those dark bedrooms, have one, and every suit of rooms has two.

Observe, again, the advantages of this triangular form of closet. What is wanted in a closet but wall room for shelves and pins. Now suppose you take six feet square out of your house for a
closet. Besides spoiling some room, your closet room is far less availahle, for the room it occupies, than my triangular closets. Your six-fect square eloset ocenpies thirty-six symare feet of your house-room, yet gives jou only twenty-four feet of shelfroom, or one-and-a-half square feet of house-room to one foot of sheiffrom; whereas iny triangular closets, ahout four-fect sides, give twelive feet of shelf-room for only eight spuare fect of hanise-room, or only two-thirds of a foot of house-room to every fint of shelf-room-a diflerence of fifty per cent. more shelfmom hy my plan thim by yours, as compared with the real room ocrupied by the two closets.

And then how much more necessible is a triangular than a square closet! liy your plan, the door must be on one end, so that yon have to go clear into it, thereby darkening it, to get to the batk shelves; whereas, by my plan, standing in the door, you reath any part of any shelf, without going inside.

The uper part of most closets is shat up, by making the ceiling two or thee fiet lower than that of the aljuining room. My masen, as usal, thes cut ofl the uper part of the lirst closet he limined, on secing whirh, I said, "Finish the rest close up." "Why," he exclamen, "it is fourteen feet high. Pray how can yon cuer reach or climh up to its uper part." Thinking a minute, I waid, "Carpenter, make me a box the shape of that doset, lut one foot smaller each way, put in plenty of those iron books, on which to hang thines, and nail it, bottom side up, on to tho top of the closet, rieft oror-heud;" and taking a thin, long strip of wood, like a lath, only longer and stromger, 1 put $m y$ clothes on it, and hume them up, 1 , t only on all around the upper part of the rloset, hat all armant this lon over-heat, inside and outsido of it, so that every spluare foot of this closet is occupied. And it is about as casy to himg up and take down a coat from right over-heal, and ull aromed the יpper part of the closet, as on the lower hooks.

One other refuisition about a good house I take the liberty of alloding to, hecause so "necessary" to a real lumam want. AlIusion is made to an in-hoor "water-closet." You have an intiren guest, whom you would treat with all possible hospitality. Obliged, during a cold, miny night, to respond to one of nature's ins-
perious calls, to go out to the usual place exposes him to tuke culd, besides being so disagrecable. To omploy any vespel in his room, besides being repulsive to many, obliges him to breatho noxious and offensive air the balance of the night. Then is not an inside "water-closet" a real necessity in a prime house? And under the stairs is just the place for ono, its rontents passing down one of those chimney-places, marked in the preceding engritving, into a receiving box in the cellar, made tight and ensily cleaned, so as to comfine all its odor within itself, and both this receptacle and the closet itself ventilated into an adjoining chimney. A recent invention in Boston renders these closets perfectly odorlese, 'by ventilating it from the seat downward into the chimneg.' 'This prevents udor from passing up into the closet or house, for; in uscending, it is swept by this air current, passing from the seat, downward, and then off into the chimney, und is cleansed by water from that cistern mear by, so that every story can have one, without in the least scenting either closet or house. To squeamish madeus and fastidious beaux this point is not subnitter, but matrons, the aged and feebie, are asked, is not such a closet a real household mecessity and luxury? Yet it need be used anly in cases of special need, the one generally used being outside, as usual.

On one other point suffer this passing remark. Since God has mado human excrement promotive of vegetable growth, to wasto it, as is now usually donce, is as wicked as to waste food itself, for it is nature's meams of crating food; and to economize it, and apply it to producing and enhancing vergetation, is a moral duty. Then, if possible, so place this ont-hilding that the wash-water from the kitchen shall rinse it down into a eovered vat, to be baled out and applied in a liquid form to grape-vines, garden vegetalles, etc. The Chinese have abondame of surh closets and vats, which their economical farmers are perpetually exhausting to emrich their lands. That law of progress, and ultimate need of food, developed in the great law of Progression, argues that all of earth's enriehing materials should be hushanded and applied to inereaz ing human food-this of course included. Since 1 adopted the practice of having all my chamber and kitchen slops emptied daily around my trees, their growth is indeed surprising, and
hecomes more and still more astonishing daily, from week to week. Let every fimily plant out some choice vines and trees, and serve them in like manner, and the amount of gustatory luxury secured by this course will be most surprising. To wasto Heaven's best enriching materials is wicked; to save them, wise and self-serving. This species of manure, saved from all our cities, villages, and families, would wonderfully cuhance the abundance and cheapness of food, and some day it will all be saved.

46. piazzag.

In completing the description of the author's residence, it remains to add, the piazzas are erected all around at each story. In the two urper ones, the floor timbers of these piazzas are halved into the floor inside timbers, so that the flooring binds the whole together, and greatly promotes the stability of the whole house.

These verandas are delightful places on which to spend twilight and moonlight summer evenings, in cither promenading or comversation. And the advantages of having them all arond the house is considerable, allowing you to choose sun or shade, brecze or shelter from it, as comfort dietates.
'Ihe senery from my own, esperially at sunset, is most delightful. Commanding a full prospeet of hoth the far-famed " 1 ighbands," and also of the Cattskill Mountains, mountain-houso included, tugether with the opposite banks of the nolle Mudson, the sails on which are often in sight, besides "College-hill," and looking down on a vast stretch of level land up the Mudson valley, it is ome of the most magnificent inland prospects I have ever seen. The procpect is vast, like a great panomam, having cery varicty of senery, except water, which can rarcly be connected with so Gue a momenain and plain landseape.

On the crening of July 1 th, rockets from nineten towns and villages were counted from my roof, and doubtless more might have been seen if looked for.

From the top of the cupola, which is 20 feet bigh, and 21 in diameter-an eetagon of cight-and-a-half feet sides-the view is truly splendid. Ot course the house can be seen "from all the country round about."

47. A GKEFiN-HOUSE AND FLOWER-RIT.

Every house should have its green-louse. Even only a $\$ 200$ to $\$ 400$ house should have its hot-led, or small green-house; while every $\$ 2,000$ to $\$ 5,000$ house should have a good one. If the proprietor has not the means to make loth as good as he would, let him curtail his house to spend upon a green-house. One of the first quality, say 100 fect long, wilb cost from $\mathbf{q} \mathbf{6} ; 00$ to $\$ 1,000$, yet a good one, with cistern and other conveniences, enn be made for from $\$ 100$ to $\$ 300$. The most expensive part is the glass and sash; but glass costs, say $\$ 5$ per 100 feet, and sash about $\$ 2$ or $\$ 250$ each, say 3 by 12 , while the wall part can be built of the materinl described for building the house. If it has but one roof, it refguires one wall, about 12 feet high, but if it has two sides glass, it requi;es but little wall.
Its advantages are, the luxury of grapes fiuer than can be had in out-ofdorer culture, a place to start early cabbages, tomatoes, potatoes, etc., and especially flowers in carly spring, before nature puts on her out-of-dour floral colors. Indeed, it can be made to subserve several very useful ends.

Another handy arpendage to any house is a pit, in which to bury winter flowers, made thus: Dig a pit, say len feet square, more or less, and fiur, five, or six feet deep; then make a bex inside, say 6, 8 , or 10 inches from the dirt, and fill in with tan bark; cover over all but a door, nailing boards on the lower side of the floor timbers, which should be set slanting to sled rain; fill in with tan bark or saw dust; then nail on your floor hoards, which should be matched, and have a doublo sash and lights at the place you enter, one swinging up, the other down, and your plants will keep without frerzing all winter, and require only wetting say once a month-for this is the season of rest, so that they require litule water till March will enable you to transfer them to green-honse or sitting-room.

49. bhade thers, shrubuery, fruit trieg, etc.

The prevailing fashion is to plant forest trees uear the house. Is this best? Shade draws nusquitoes; and this alone is very objectionable. They do not gather in the shados of small single
trees, but only where foliage is dense. Hence frait trees cant surround the honse without inviting them. And do not fruit trees low k as well as furest? 'Their foliage is as green and beatiful. They lack only the size and massive majesty of large trees, but exeel them in the beauty of their blossoms and fruit. Cherry trees offon grow lange, and, to my taste, far eclipse forest trees in beaty of look, expecially while blossoming, and loaded with ripening fruit ; firs what laws better, more luscions, more inviting, than a tree full of fruit, and in all its stages from blossom till its fruit is picked? At least the difference in beanty is not great, whereas the profitableness, and the real gustatory luxury derived from fruit trees, fenders them very fir superior to forest trees. And fruit trees, especially cherry, by the roadside, how beautiful, how lusurious, low refreshing the fruit! I have lined the road where it pasees throngh my own lands on hoth sides with them.

Forest trees are aloo alsolutely incompatilide witha the prospect. De your hambeape cver so fine, they hide, or at least spoil it. A grove somewhere below, or on a side of the house where the prospert is poor, may do, but why not a grove of fruit instead of forest trees? Still, "every one to his liking," whilo we consider the kinds of fruits most desirable, and their cultivation.

strawnemRiga.

Of the value of this fruit it is not our purpose to speaktheir deficionsm's ath sts that-but of their cultivation. Amost every home has a limle lam or lot attached, at least a tithe of
 the beat single variety is lfoveys seodling ; yet it is Ioss prolific than some ohars, and needs to he intermixed with some other varicty, in order to fructify it, all its bossoms being female. The Vigeina scodhag is am early varicty, and good to intermingle with the Hovey. 'lhe Loston l'ine is mother exechlent kindJanee, rich, and prolife. The l'inc-apyle comes on hater than cither, and on this acemot is valuable; and Newianl's l'ine still later, hevides hulling itorlf while picking, and ripening gradnally. Fequent watering will greatly promote their fruitfiluess and prolong their season of ripening. When not in bearing, slops
from the kitchen and chambers will wonderfully increase their fertility.

BLACK RAAPGERRIEB

Begin to ripen before strawberries disnppear, and are quite as delicious-by most considered even more so. To my own taste no flavor exceeds that of their juice expressed and sweetened. On puddings, or eaten with bread, it is unsurpassed. And in our ice house it can be kept for months, without the lenst fermentation. Working spoils this flavor; for what is the fermenting but the souring and decaying process; besides engendering alcohol, which is inimical to lifo and virtue. This berry, as also leaf, is astringent, and thus good to counteract bowel and summer complaints, nor quite as bad to take as pikery. Sulect from the fields bushes which bear large, luscious berries, transplant to some corner of your garden, there to remain undisturbed, but wet' often ${ }^{1}$ with soap suds und chamber wash, and they will bear most autonishingly.

RFin RASPAEIRIES

Ripen at the same time, and for preserves stand unrivaled, if not unequaled. Of these there are various kinds, of which the Falstaff is perhaps the best for general culture, because the red and white Antwerp require to be covered in winter; yot are well worth even this trouble. They bear most alundantly if kept well manured. The ground can not be too rich.

Their standing price in the New York market is 25 to $\mathbf{3 5}$ cents per quart, and their culture furnishes women who have to earn their own living, or even spending money, a much more easy way than the needle, and quite as genteel. Why is not berry culture an appropriate female occupation? Certainly for wifo and daughters to have their leery beds, and often adorn and luxuriate the supper tahle, after husband or father return from daily toil, is both appropriate and codearing. INow he must relish them when provided by those he loves, and that love him, and provided as a token of the love they bear him! Does not this provision of small fruits furnish our women with n most excellent means of awakening and perpetuating affiction? "IFer
son's mandrakes" were Leah's means of wooing Jacob's company and love over his other wives.

HLACKBFIRRIES

Follow in the wake of racpuerries-first, the running, then the standing. I have appropriated a portion of my own ground to both kinds, and transplanted three choice kinds found growing wild. I also imported dhoice buhes from Maine, New ILampslire, Vermont, Comecticut, and central New York, some of which prove to be very large and luscious, and namy times repay both expense and trouble. Once jlanted in rich ground, they repuire little attention, except to pick the fruit. They, too, like the black raphery are autringent, and excellent for children. The same remaths made of the juice of the rasplerry, applies equally to that of the blackberry. Diluted, sweetened, and eaten with bread, and in place of milk, it is far more palatable, nourshing, and healthy. Wowld that men would substitute berries and their juice in place of milk and butter !

Are cotemporamenits with and follow hackbertics, and are about equal to them, and shouhd be coltivated. These and black herries fill an inpurtant gap betwen strawberies and cherries, on the one haml, and peaches and apples on the other, and which reincreases their value.

Chenlites.

Another cxedlent and delicious fruit. The best kinds for a small gation are Coe's Trancparent, Mayduke, Black Tartarian, Yollow Spaminh, aml Coronation. Coe's Tramparent is yet litfle known; was pronluced by Mr. Coe, a nurseryman, of Midilletown, Comn, and is the very carliest really good cherry known to the writer. The Mayduke and Tartarian all know too well to reguire description. The common Murello is gand for preserves and pies, yet too acid for the table, and a poor hearer. Jimescys Morello-it seedling raised in Fishbill, and to be had of Brinkerlonlf, uurseryman, Five Cornera, Fishkill, Dutehess Co., N. Y.-is very early, is excellent for both cooking mid table, very
rich and prolific, and one of four of tho very best. Where garden room will allow, the Waterloo and Knight's Early Black should be added. They rescmblo each other closely, and also the Black Tartarian, yet are a week earlier; and Knight's Early Black even precedes the Mayduke in ripening, besides fully equaling the Black Tartarian in size and thavor. A single tree of the common Black Mazzard may be well, because being late $t 0$ ripen, aud good to eat and cook.

Apricors

Appear as cherries vanish. A tree or two are advisable, yei should be budded on plum stock, and bo on the south or cast side of some wall or house, or else on the north side. Tho Golden and Moorpark are the two best varictics-the former, Jater in blossoming, oftener escapes spring frosts than the latter, yet is not as fine a variety.

PLUMS.
Of this fruit the very carliest really good kind is IRivers' Ealy, a tree of which should eurich every garden. The Eigir Plum, popular because large; is worthless. Few kinds equal tho Green G:ge in quality, yet the French l'rune suits my taste as well as any. l'lant Cocis (iolden Drop and Late Red, the Frost Gage, Dimson, Blue Gage, a commun native variety, and other kinds.

But the curculio, a small bug like the pea-bug, large behind und small before, and having a hard shell, is most destructive to apricuts and plums, and can be destroyed hy hanging several large-monthed vials partly filled with sweetened water on tho limbs, in which they will drown themselves by attempting to drink; by spreading sheets under the trees, and shaking haill, which will cause them to fall; by seatering a double handful of salt around under each tree, which will amoy and destroy the worm before it hatches; by collecting what plums fall off, and stecping, thereby destroying the worm-and shaking ofl the stung fruit-ind by putting two or more wrings of cotton batting around the tree to prevent their crawling up the tree, while yot too weak to fly. Sprinkling or throwing dry lime on the tops
of the trees while wet with dew or rain, helps to keep both this and other insects, experially ants, from the tree, besides benefiting it. It is equally good on all kinds of fruit trees.

PEACIIRS.

This fruit is too well known and too delicious to need description. Every house, in every locality where oue will grow, should have its peach trees.

The Aimels most desirable for a small garden are, Eally York, Eaty Rareripe, George the Fourth, Wahington, Morris White, Crawford's Lially, Crawford's Late, the Tartary, Scott'sy Nomparcil, Nonesach, Stump of the World, etc. Bat the kinds are so mumerous, and the qualities of many so nearly alike, that we can wot detail them.

The two enemics of the prach are a wom of the root, and winter. The former are easily forestalled by annally examining the crown of the roots, and if gum filled with some sawdust appears, the worm is eating away, and must be dug out. Boiling water ponred abrent the roots will also kill them, nud benefit the tree, and any had-smelling substance will also keep the parent wasp-like insect from depositing its egeg.

Against the winter they are easily protected by tying straw around the body and main limbs-only a few minutes' work.

PEARS AND APPLES.

For deliciousiess of thavor, molting testure, and juicy pulp, pears stad unsurpased, even by peaches.

The diacor of uo peath surpa-ses that of a first quality of pear. They are also in cating from July till April, while peachos are oltainathe only some three months. They likewise contain iron in larger proportion than other kinds of food, and by furnishing this indicpensable life-instromentality to the bood are eqpectally healthy for pale, comsmptive, and hue-veined persons. loor peans are very mhealthy, but good ones as beneficial as any other fruit. Their variety is also very great, swect, acid, melting, breaking, early and late, which alapts them to all palates and persons. They are also extra good fur stewing and preserv. ing-no fruit better.

The kinds most desirable fur family use are, taking them in the order of ripening, first the Early Sugar, or Sweet IInreest, which is first to ripen, yot rather insipid; next the Madeline, three or four days later, yet fir better, and a truly excellent pear both for eating and cooking, a tree of which every family should have; the Bluodgood, a rich, russety par, following the Madeline; the l'assams du l'ortugal, or Portuguese Passion, a small apple-shaped, melting, and most delicions variety, a wonll.eful bearer every year; the Rostiezer, very swect and rich, yet small; the Bartlet, a fine, noble, buttery, prolific fruit, anong the best; the Vergalue, or St. Michacl, most melting and delicious, but generally known; the Scekle, a small, but the most highly flavored of all; the Louisa Bome de Jersey, a large, beautiful, and most ddicious vaniety; the Buere de Amanlis, good to eat or cook; the Buchess de Angouleme, first-rate on quince stowk, yet not so grod on pear; the Bullum, very prolifie, and almost efual to Vergalue; the Buere Diel, an extra large and fine kind when well eultivated; Queen of the Low Countries, extra good for preserves; Catalac, and Rushmore's Bon Chretin, both first best for coohing ; tho Winter Neillis, Vicar of Winkfiedd, and Lawrence, for winter use; and Burre Spence, Esther Buere, and Buare Rans, the latest keeping of all.

Stevens' Genesee, Chamomerl, Count de Lamy, Ienry IV., St. Ghislain, Jy son, one of the sweetest and richest of pears, and many other kinds are well worthy of cultivation, yet those who have our first list will have at least a good, though possithly not the very hest, selection.

Their sucenssful cultivation requires a rich soil, well supplied with lime and bones. In many localities tie winter kills them, yet I think this oncasioned hy ton derp setting. Thes the derp roots continue warm, and therefore to semd up sap after the weather has changed from warm to coll, whereas shallow set roots, becoming cold as stoon as the top, do not force up sap when cold enough to freeze it. Most trees are set too deep. The crown of the roots should be above the earth. If your trees are deep set, dig off all the earth down to where the roots branch out, and you will lose few, if any, and none aftor fairly established.

Most pears require to be pieked before fully ripe, and are better if ripened off in the house.

Of apples we have little to say, because so common; yet, much as they are prized, how many neglect to set them, because so long before they bear! But time pasees faster than we think for. Once nelle set, and this is a most important point, they grow while we slecp, and in a few years become large, fine trees, annually loated with the means of health and gustatory luxury. Peaches hear carliest, and pears are longest in becoming productive, yet live longe it, and when one limb dies, send up others, and live on in spite of decay and every thing else. As I was bringing home a lead of pear trees, a neighbor said: "A very good thing for the neighmorbood, this bringing into it these fime fruits, for somehody will be bencrited; but, Mr. Fowler, you and I will never live to seo them bear, for it takes fiflech years for that. This was in 1×19; and I this year picked half a bushel of delicious pears fiom some of the trees in that very load; and in fone gears mome shall expect topick four hushels alphere off from several of them. All who see my trees are atomisher that they frat so carly and abmandy. I attribute it to two cause-thewing sereral home, ohtioned of tamers atm comh-factors, or atinats' skulls, ohtained from lutehers, or other bonce, inte the beles, mender the trees, before setting, and cellting the lres or residum left after making somp, from a chandler's factory. I cart it cirint milos, and pay ten dollars a yoar for it, and think it pays abmennly. Of all the trees 1 ever saw grow out the eromi, mine, stred in this way, take the lead. These lees contain athali and salt, and are Jike soap suds, only far beiter. A hes are firet beat, eapecially for goung trese, contaiaing the very clemmer reguited fin the fomation of wood.

Lint to recomanom that asontment which will furnish a succession of aples from day to My is all we will uow attompt, namely, the sweet and the sime henoh, ripe in July, the dersey Swet, Maden's Mhh, Eall lippin, Soek-nofarther, 'Aalhman Sweetins, Grening, hahwin, Northem Spy, and Loxbury lais. set. Others maty he added according to your gromad, but so much is already known of this fruit as to require little explanation.
49. noof and roofing.

A roof nearly fiat, so as mercly to turn water, is, on several accounts, greatly preferable to a steep one; especially as a promenade, for drying clothes, etc. It is also more easily framed and stipported; because a directly downward pressure is more easily sustianed than a slanting one. The water from every house should be carried into cisterns, constructed in its top, to be used in chambers, thus saving earrying it up. If the builder is unt alle to do better, let hiti furnish a larrel, or horesheal, or a largo trough, lined with tin, to retain at least enough for washing purposeq. And to have plenty of hot and cold water all through the house is a luxury too great to be wanting in any completo house. This is easily effected by constructing a cistern in the top of the house, having a lead pipe connceting with a copper builer attached to fumace or stove, so that the water will ho forcel down through this copper hoiler, heated, and driven up another pipe into the chambers, or a lath-room, and also drawn -out of the boiler direct. I'robably the best way to construct these cisterns is to make a strong box of joists and boards, and line with tin or zinc. These joists can bo made to inclose and hold the boards, atid they the zine-prohably better than tin, for it never rusts. A box can not ea-ily be made water-tight, and hence the need of some inside lining.

Filters can be made inside these cisterns, according to dircetions already given. The water from the roof can be pade to rum of at caves, as is usual, and taken inside by leaders, or the rouf so constructed as to have it run down in the center. He this case some sort of a balustrade will ho required, which, while it will increase the expense, will greatly improve the looks of the house. My own has this balustrade, serving the same purpose as the banister of n portico. Mine is built partly of brick, and in part of the same material used in the homse. It is three fiect hioh, and panelled; and the midlle of the panel-work is laid up with open spaces in it, thus: a row of brick, laid one above the other, then an open space alongside, then nother row of brick, and another open space. Above this is another tier laid solid, and mother sinaller tier of open-work still above, and a layer of brick
still alowe that. On four sides, the first foot of my balustrade was laid up, with brick, owing to the supposed difliculty of easting the piers and patm-work out of our gravel material. But afiur seceiner just what was wanted, I cast the other four sides out of this gravel-wall material, just as well as to have used brick, and at a great saving of time and material. And there it stands, unprotected, and some even unplastered, but endures all exposures to the weather, besides being full of corners, as solid as those made of trick-proving that our concrete will stand the weather, wholly undrotected, even by a coat of mortar.

At first, this lalustrade was constructed solid, but looked so heavy for the lop of a house, that I suggested to the mason whether brick coull not bo laid up open, so as to look lighter, when he devised its present form. Still, it cost me considerable time and money. Jet a wooden one on a stone house is hardly appropiate.

My suof proper is built just as you would build n floor, of floor-timbers and loarts, using matched fooring, every way as for a floor, exerpt pitching the water into six centers, one under cath of the four cistems alrealy mentioned, and two connceted loy pipes with thense two cisterns below, before described. Thus murh of rouf; next of

FOOFISG MATFRIAL.

Above a year aro. I supposed I had discovered a material examly and alminaly ablaped to rooting purposes, and published it. hat it croches, and this smikit. Put on in November, it was perferly tieht till dprit, dming which time I wrote my description of it ; bat the rhm, ers of tomprature from hot days to frosty niwhts camod it lu swell aml shibk so as to erack it. Hat even yet I trich and henplo patch it with the same material, hat was obliged finally to give it up, and resort to tin-the best metal matorial yet ertmerally kown for roofing. My material was cunperse ot athe part bakes hack Ohio paint, to six parts tine beach samb, mixed twether when dry, and wet with raw linseed oil till thin enorgh to work with a trowel, and spread on to a cosering of corton cloth, wrung out of linseed oil and spirits of turpentine, and tacked down. Or thus: sew together threo
breadiths of cotton cloth, wet it in spirits of turpentine and linsced oil, wring as dry as you well can, these breadths stretched and tacked down, the whole covered with a compost made of six pati, by measure, of white, clean, dry beach sand, such as is used for scouring, to one of llake's Ohio paint, mixed together while dry, and wet with linseed oil, and worked over as you temper mortar, till thin enough to spread with the trowel; sprend ns thin as you well can, say one sixth to one fourth of an inch, and, after standing a few days to harden, paint with Blake's Ohio paint nad linseed oil. It hardensas hard as stone, will grind iron or steel like a grindstone or mower's rifle, and is impervious to water. Yet it eracks when exposed to sudlen changes of heat and cold. Still, if inside of those cisterns just deseribed, or even in their comers and joints, I think it will work well; still have not tried it there.

I regret that I should have raised public expectation only to disippoint it, but was misled by its not cracking in cold weather, lut eracking ly sudden changes from heat to cold. The properties of this compost are certainly most remarkable, and I doubt w't its only fault can be olviated; still, to improve on it is out of my line.

Mr. Juseph Mawley, of Detroit, Mich., says he has discovered n eomposition of which water-lime is the bond ingredient, whin he eqarrants. Its cost is alout five cents jer sfuare foot, and I know Mr. II. to be an honest and honorable man. His material may he worth the trial. I recommend it with much confidence, for I know the man himself altogether favorably, yet refer you to him for particulars.

Some ronfing material which ean be spread on, yet will withstand heat and frost, is indeed most desirable, and will some day te discovered-for Nature provides for all the wants of all her children-and water-lime, and sand are obviously the material, if they could be kept from cracking, which is doubtless posstble.

GLABS FOR HOOFING.

But I can not resist the growing conviction that glass is Nature's roofing and flooring material. Impervious to water, unaliected
by extremes of weather, indentructible by time, and exactly allipted to light the bomse from the roof, why is it not as well adaptel to roofing as to windows? All rempinite is to cast it so thick as to prevout hail from breaking it, and, if you wish to walk on the roof, to sustain a perooti's weight. Crystal-Palace glass effecte this emb. Common green-lunse ghass costs only some four cents per foot, and con be made abmalatly thick for from six to cight conts. For ruofing purposes the green-lotte glas, of any other of peor or coarse puality, will answer just as Well, amh a guk bottle, furmiludat six dollars per humberl, would contain matherial emmen, I should think, for half a tiont symare. The stork for greot grass costs little, being composed manly of samb, everywhere choap and ahmondent, and saltpeter and anhes, two wher cheap ingredients, so that the material for glass roofing necd enst but litule, and its casting or working into forms adaped to roman neel mot le expensive, for, unlike window-glass, wrinkles and riputs do not hurt it. I doult whether to make CrystalI'alace inlas costs over eight or tell eants per stumre foot. A tin roof costs cight to ten cents for tin and laying, and two conts for the bards mater it-say twelve cents; while glats, if manuufactured on a large scale, wouli probably mot cost more.

As to puitiog it twerether, I would suggest casting it in plates as wide and long as is convomion, and the longer the letter, and pat turgerber butty, or India rubber, on some other elastic substance, peroure on whidh, by crowding the glats hard, will keep om water. de all evente, they con be casily pat together so as (t) shed water with putty, which is cheap and water-proof, and well allapted to this cmi.
handerain; can wht this glas be cast on the rowf hy having small puitable fumases, what they cam be stationed on the roof, and meet: and rim your sand, salperer, and potash on the spot, ant all in one solid sheot? Ion!y suggest. To this cml, could not, after the fow-timbers are placed, a board as wide as thry are fir :part he mailed along betueen them, a coating of sandthat wed fir moding-he spread over, and the melted glass run (O") this sam, and the hoords and sand then taken away from below? (ilass can be melted at ormary red heat, hy a reeent inveution. Can not some ingenious man work out this suggestion
into some practical results worth a fortune to him and the world? But, at least, olserve these two ficts, that glass is admirably adipited to roofing purposes, and that glass material ts almost as cheap as dirt, and abundant every where.

The inventor just mentioned proposes to use it for the malls of honses, so cheap does he hope to make it. If glass can bo used for roofing, it could be run in all sorts of forms and molds of beanty, interwearing, as in carpets, any varicties and combinations of beautiful figures. In this case iron should he used in place of floor-timbers as rafters, the sun and light kept out, or softened by paint, and all kinds of colors could be added; thus rendering floors and roofs most beautiful, and dispensing with lath and plastering overhead.

THE OCTAGON FORA AND GHAVES-WALL AJPLJED TO BCHOOL HOESES AND CIIUHCHES.

The school-nouse is the first comer-stone of our nation's greatness, the next being the ballothox; but the former underlying and guarding the latter. All my beighbors refused to locate our district schoob-house on their lamds, while I coveted its locatinn on mine. It tetches meadiso asd amometic, and thene start. human intellect on its aseending pathway, to be caried onward and upuard illimitalily.

Then, since whatever nppertains to schooling is correapondingly important, the hest form for a school-room becomes a matter of no small conserfuence. And here, the nearer wo can approach the circuler form the better. To gather around a sherical or elliptical table, occasions more hamony and agrecable sensations than around a supare one. 'Jo have a truly agrecable chit-chat, we require to form into a circle. Why our miversal use of "the fanily cancle," "circle around the fireside," and the like, but that this circular arrangement of the parties facilitates that marnetic flux and relux of emotion which creates these delights? As in magnetic and electrical experiments we nust complete a circle, so, that several minds may act in concert, it is requisito - that they form around and face a common center. The more so where, as in school, all eyos are often required to be directed simultancously toward the wame object-the teacher. This pur-
pose the octagon firmsorves better than the scuare, and is preferable every way-more than enough so to build the extra angles.

This form will also, give the teacher a far more sightly and advantageons stand-point. Of course, to be heard and seen well, he requires to from the whole sehool. A desk at one end spoils that coul, liy placing all its scholars actually behind the teacher, while those at his right and left on the sides near this end must look at his sides, not front, while those at the opposite end are farther off than if the house were octagonal.

Fig. 29

Besides, these statare angies break the sound, and canse echoes far more than octaronal ones. Many other liko advantages ap-
pertain to the octagonal form over the square, but these should suffice to secure its universal adoption, wherever a good schoolhouse is attempted. Yet wo lenve it mainly on its naked morits, or on the way it strikes the reader's obvious common-sense view of this important matter. Let the foregoing engraving spcaik to the eye, and through it be allowed to lay its appeal to the sound julgment of those who would put their children into a good school-house.

Of course, since the cost of school-houses consists mainly in walls, roofs, seats, and floors, and since our gravel-wall greatly cheapens walls, it must chenpen the school-house more, relatively, than other houses-roof, floor, and seats being the same by this method as by that. But its light is far more advantageous. The square house must, of course, have two windows on a side, else its corners will be dark-will any how be much darker than our octagotal corners-whereas n window to each octigon side will look better and more proportionate outside, and be far better inside than a square house with two windows per side., The light will then come in at the back and over the shoulders of tho scholars, hurt their cyes less, shine on the book far better, ho more equally distributed. through the corners, and be exactly what is wanted in every respect. '.he same is true of the heat.

The room, too, will be more compuet, the selolars more eluidistant from the teacher, not some too far off, while others aro too close by, so that every feature of this octagonal plan recommends its uniyersal adoption.

Of course one sitce should le appropriated to entrance and the teacher's desk, which should be cuntiguous. This form will aloo enable teacher to sce scholar as much better than the symare, as scholar teacher, and allow him to take in the whole school at one furtive glance better than he could do in a square room.
'Ihe seats should all face inwardly, and rise from the center toward the sides; but this has no special reference to our octagon form.

COMPLETE VENTLLATION,

No school-house should ever be erected without ample provision for fresh air-this most essential human requisition. An
opening to let it in from below, and another for its escape at the top, are indiaponsable alike to the child's health of loody and vigor of mind; for foul air thickens the blood, and therely renders intellect ohtuse, memory confinsed, and the feelings blunt. Better cut short their supply of food or clothes than of fresh air. Yet how easy its supply-a fow dollars at most securing it while tho house st:uds-hut low aimust universally neglected! And how many seores of thousimuls, every day, and all over our comery, ano breaking down their comstitutions and enfechling themselves fin life, in mind as well as holly, just for lack of this simple contrivance.
'Jo waming the feet special attention should also be paid. Cold feet weavion colds, hadade, and mental dulhese, hesides deranging the ciroulation pormanently, and breeding discase most chechally. If they san be kept warm, the borly will take care of itheli. [Provide for this, and jon need not hat the room any thing like a; hut as yom wherwise most, to insure comfort. To do this, the rem showld be beated by a fumace placed below, iuto which atmit fresh air, and from which have a brick flue extend arombil the homes, wider the floor-not very expensive, but very combartable.

Parents, on your love of gour war children I ground this ap.
 completely to ruta - omatiy the chiidren-some by lireaking down the Jifepower, and lawne: them siokly and iname for life, and so

 hanse these death-inducing emses are silently, insidionsly, but bost wememety at work, dealing out diseane and death to chil
 Fot the sehentrom misht be make perfotly hathy to both teacher and whand Pament, mahn it so. Trachers, urge this point. Stheot-tarhing, in and of itelf is pre-eminently healthy. Only lad sermembenses romder it uherwise. This want of ventilation, :arl warpual temprature, and other like canses, render it unbeathy to both gon and the crholar. Sce that houses are built and kept right, and tewhing will promote your own and their health, whereas now it makes such havoc of both. To

CIIURCIEs

'The octagonal form is as advantageous as to school-houses, and for like reasons. To impress an audience, a speaker ropuires that they be gathered all around him, except at his back, where the choir shoulld be located. The octagon form secures this end perfectly. The syuare form, with the pulpit at one end, and tho house much longer than wide, is most nwkward for both speaker and hearer. Some are too far off, others too near. Compactuess and equi-distance facilitate inpressibility. These tho octagon form promotes, while the square and oblong shapes prevent, the same as in school-houses. Let the jirinciple here involved, nemely, that an audience is much more readily impressed or afiected if seated in the spherical than square form, and square than obslong, be duly appreciated, for its learing is cordinal and fundar mentol. This ulone should secure the universal adoption of the octagonal form for churches.

And our gravel-wall is just the material out of which to laild them; for the wall is one of the chief items of expense, and we have sech how much can be saved on that score by using our material instead of brick, especially at present prices.

Oue winduw on a side should sutice, and made the larger the more light is wanted, but is in better taste thau two. The entrance thould always be in front of the speaker, so that tho whole congre ration need mot have their attention diverted to witness every ingress and egress. That is, the entrance should be at the bach of the audience.

The octagonal furm also facilitates the congregation's secing one another, and therely the interchange of friendly and lienior nant feelings toward one mother mark this point. Suat a criver. gation in a long, narrow house, with the pulpit at one end. Of course the fuces of all are to the bucks of all. None can see the faces of any, except when heholder or beheld turn aromed. Hence, but little interchange of good feeling through the countenunce can well occur. But scat them in the octagonal form, the seats all partly facing all, thus allowing all to see cach, and cach all, and the benign smile of recognition and good feeling ewkindled by this freedom of sceing each other, and expressed in the
countenance, will spread from "face to face," and suul to soul. In short, what a world of meaning is embodied in this "face ro face"-exactly what our form secures.

Fig. 89.-octagomal choact.

This form will also accommodite those who attend church "for looks," or to "sme and the seen." I once asked a lady what were her reasens for attonding (irace Charch; "Sympathy of doctrines?" "No," she frankly answerei; " to tell the whole truth, I chose it beanse of its cxtra gentitity. The fashomables all go there, and of course I must go too."

Now, ought not our churches to be luilt so as to serve the wants of this class of attendants? If a genteel woman wants to exhibit
her dress, or tinsels, or paddings, why do let her. She may thereby be brought within the reach of good.

Seriously, is not our form of house and arrangement of seats admirably adapted to promote the ends of religious inectings? Let a congregation worship in the octagon, and then in the square, and they will feel the difference most delightfully in favor of the octagon.
'Ihe mere arrangements of the scats we have not studied particularly, because the architect can do that better than we, because various arrangements of seats and aisles could be made to suit various societies, becnuse different plots of ground will require different entrances and arrangements of slips, and because our form allows oven a greater diversity in this respect than the rectangle form.

Truc, in a square or oblong form the seats can be so arranged as to secure this facing of the minister and one noother, yet nut as naturally, whereas it can not be made as effectually to secure compactuess.

5l. oeneral building directiong and advice.

It would seem proper to conchode this work with a few gencral coninon-sense directions to novitiates in building, partly by way of saving them from learning ly bitter experience, and partly to facilitate cconomy and expedition.

matule your plan well,

Think up, beforehand, just what you want, in order to provide for it at the right stage of the building. Study where you ran crowd in this little convenience, or that means of comfort, and lay out your shell accordingly. If you want a dumb waiter, or cistern, or any article whatever, consider which, what, where, and how, in season. Few houses have a dumb waiter, yet every twostory house should have one; and an entry is a good place fiur one. They are ensily rigged, thus: A good-sized wheel, one, two, or three feet over, according to the width or length of tho waiter, so that one side of this wheel shall take the rope from the center of the dumb waiter, and the other side drop the weight attached right into its pocket-this wheel, rigged to run on four
little wheels, such as are often used for grindstones, and the waiter itself made ly crecting fime corner posts, a slat atrous each end at every shelf, for the whiffomeds to rest upm, no boardis at baek or cnds, and only halfineh sholving, all well braced, and rope and wight faishes it. I planned my own traveling eloset long after I phaned my house; and at more cost and less completeness than if I had thourht of it seasmably. Yet far better such improvements added on afleroard than not at all. Having matured your plan, and embraced all you intend or can aflord-

GET AILC RFADY.

Work done at a disaduantare is done at great extra cost. All delays are very expmive. Auticipate what is wated, and have it at command. To wait for one thing will oflen stop all or most of the work, and necasion much loss of time and temper.

EMPLOY GOOD WORKMEN.

One really goon haut is worth several poner ones. A poor one or twr, thrown in to do odds and ends, may do, but must be tructed with mothing on which any thing else is depending, mbess watchal at cerery stroke. The hoss-fior every thing mist have
 businese, as well as industry :med intority.

Then seck to promote foud feling toward yourscif and cath other, and equectally intionst them in your arom, as if it were their own. lint send away the diaaliected at onee. Best of all-

Kerp your own emman sence ever about you, and shappencd up for any cmergoncy. In nothime do men fail in buideng as mach as in this cemmontity.
May this lomk aid erery reader incither creating on mandowwa a mon mome.

Funally, your huse onee built, consecrate it ny love; mever descerate it liy disenerd. Let it be made holy and saered hy conjingat, parchat, and lital afrectuos. And in this, its mited hemethe father and mother-must lead off. They disaffected, all will dislike all. 'Tary fend, all will be fome. Show me disoledicut, bad-cmpered chilliren, and I will show you discordant feelings, if not hear-burnings betwoen their parents. Iusbands
and wives, do live in love-at least ngree to disagrec-or live apart. Your house is holy; do not detilo it. Let every night's rest, every gustatory repast, every intellectual and moral entertainment, and every other plensure participated in by the family 'within that hallowed nowe, but enhance your love for it and for EACH other.

Scatterina Obeervations.

These, omitted in their proper places, had better be inserted here than omitted.

The Authon's Fiont Stairs,

1. In the drawing, in the book his front stairs are drawn at the iee and green houses, so as toleave the lower is the main entrance, whercas in the upright drawing in the frontiopiece the stairs are drawn at the frout dowr. IIe has thought best to change them in fromt, heranse nome will maturally come up these stairs exerft these who may properly enter parlor or sitting-room. Others will maturally pass in behind, and enter under these stairs into tho lower or through entry.

This oetagon form can be adopted for brick or frame buildingy about as well as in the gravel wall. An octagon angle is mot quite as easily framed as a square, yet is not difficult ; and when brick are used, they cam be cither elipped, or laid up with their corners projecting, thus furnishing an ormamental cornice.

Exclude Vermin.

2. Be sure to step out all rate and mice in the start; first, ly making a projection of some inches, even with or just helow the level of the cellar-floor. Thiry absolutely must have holes fir nests. ${ }^{1}$ They rarely dig into the middle, hut always at tho sides of rooms, or d,wn by the wall. Now, if they dig an inch or two :and find a piece of stone or brick they give up, and finding no home go elsewhere. To stop thein out of the house, fill in all your walls clear up to the top of the floor-timbers, or to the floor above, and also, aftor mop or base-loards are nailed on, and before lathing, fill in between these boards, or at the bottom of all walls, with stone or mortar, or our concrete-only a few minutes' work, yet it forecloses all thoroughfares; so that if one gets in, he can not get round the house to breed or feed.

SECTION V.

OTHER PLANS FOR, PAlititioning an octagon moUse BARNS, ETC.

After our last shert of procf, as we thought, had been real and retumed, our emaver, Mr. Wowland, who has guite an architectural tacte and talent, and to whom we refer our reaters fir any additionai drawinge, plans, ote., sugegested another mode of partitioning oft an entasen home ; and fereling that we have not given a sullicient member of plans, we append another section. Tho following diauman represents a honse so comeordant with hoth the authors tate and the octaromal mole of building, that he not only apponds it, hut, for an cudinary sized house, recommends it as suprior to any wher he has seen, for simplicity, convenience, and practuat utility.

It gives bine simate romes to cach story, a front and back
 waiter, as weth as dhan, es. The fur romes can be used as follows, or in any other way thought bove. F, E, front, and B, E, back baianor, J', pator, J, diningemom, K, kit hen, B, bed-room,

 roms, whelher this is not eomplete and perfect. It retains all the pernliariti, and admatage of our octaron style, namely, compactuess and contighty of romis, contal stairway, closets,

Suppose the from dour to he on the somthwest side, and back entranee northeast-or the reverse will du about equally well, as
will also a southerst front and northwest hack entry, or a southeast front and southwest back entrance, if this is handiest to the back lmildings, or a northwest front and southeast back entrance, or a southeast front and northwest back entrance, or any other arrangement of fromt and back entrances which will best servo your front road or street and back buildings. Yet it is preferable that they be beturen the four cardinal points of compass, so as to bring the four main rooms due east, west, north, and south. Our parlor will now front toward sunset, which is peculiarly appropriate, since we use this room mostly afternoons and evenings; and our kitchen toward sumrise, also peculiarly appropriate; our dining-room on the south side, to enjoy all there is of spring, winter, and fall midday sun, while the bed-room faces north, and its aspect is of little account.

Fig. 80.

this pantry with and for things, and then through into the other. This location of pantry letereen kitchen and dining-room is really adnirable-the very handiest place possible.

Two small closets could and should be partitioned off from its two acute angles, the one opening into the dining-room for dishes, : castors, and other table utensils, and perhaps table-cloths, pies, etc., and the other into the kitchen, in which to set away kitchen things, "cold victuals," and the like, for which its being dark will make it all the better, by excluding flics. At all events they will be exceedingly convenient.

A triangular dumb-waiter, A, might well be located in its right or inner angle, having three openings, one into kitelen, the other into dining-room, and the other into the pantry, so as to servo each rooll-a complete place for this essential requisite to every completo house. It would bring things up and down into both elamber and cellar, and save a world of weary steps. If this traveling closet is not put here, the doors from kitehen and diningrown should be putelinse into the inner comer ; but if plated here they should he put elose to it.

Six other chosets are also provided for ly our plan: two in the angles of each entry, and two more in those of the smatl lal. room. They cam be made larger or smaller at pleasure, to open into whichever room is deomed best, and to run at right angles to either wall, but I should prefer to have them symare with the outside wall, excepting those of the bed-room, which mary symare with the cross-walls, so as to give the more room for tho bed. As we hardly need a eloset to the parlor, we will have tho one at the left of the front entrance open into the entry, and appropriated to overcouts, hat:, umbrellas, ete., while a hat-siand placed at the inner angle of this entrance would receive those in every day use.

The other one shonld open into the dining-room, whare it would do admiralile service. Aurther naturally opens from tho left-hand angle of the back entry into the kitchen, and would serve for tins, kitelen utensils, ete., while the one at the ri, ht hand can be made to open into cither the large bed-room or entry. But this large bed-room has another on its other sid', so that this might be used for a wash-closet, having a pump con-
nected with a cistern lefow; and still another angle in the letthand corner of this sthall hedroom gives another clowet to either partor or hed-romin; yet, as clonets to parlors are considered out of talle-thourh mon hy me-it can comnect with the bed-rom, where it would prohalily lie needed even more than in the partor. This abiundant sulply of eloocts and small rooms furnished ly

 only beeane they have so few of them as not to know their value. Descrijtion, however vivid, can not do justice to their utility. Only experience, both without and with, can adequately impress their wefolness. This feature alone of the octagonal fian should and will secure it encmeral adoption.

Suall romes, too, are a very geat convenience. They serve seme purposes era hater than lame mes. Every honse, to the any way compluth, shubld hate a gradation of rooms from larer down tu small. 'This will remler a given amount of rom far more "mithbl, aurl -rviecable than if all the rooms, as is usual in domble lomese, are about "phal in size. ${ }^{34}$

Ohserve, also, how mach shorter the pasage from room to room than in the ushal dublle homse, having a throurh entry. an

Thus yun pass firon pator te kitchen by only pasing through one ten-font staimay, or ames the marow end of the diningrom, atil form pathr to bedrom, and dining-room to kitchen, even easier than if sibe hy side. Yon go aroum or across the stairas, and from rom tormem, or to and from carh romen
 like pasages in erdinary donble houses, as shown in fig. 16. ${ }^{39}$ Ser, tow, haw lilta ronm, comparatively, is consumed by entries, yot hew complotely wery end if an cutry is subserved!

Jet as buxt inguire how much rom this plan will give us, bothahsolutely and compratively. If your sides are fifteen feet, cath larse room is $1.5 \times 12=176 \div 9=18,2$ yarde, minus these small corner clip', whith do mot lessen the real working size of the rocan at all, as seon in fir. 11 and its explanation." The stairway should he ten fert square, yet one door, probably that out of the hed-room into the stairway, may have to be sacritied, unless the stairs pass from one corner through the center across
diagomally, or the longest way, and then turn an acute angle. But of this anon. This square can be made larger or smaller at pleasure, but should not he so large but that the doors will come in between the corners of the stairway and those triangles. Ten feet square is the least we can well hava it, and eleven or twelve will be better; but twelve will be anple for as large a house as may be needed.

It might be well to connect the small bed-room with both the parlor and large bed-room, so that it can be nsed with eithre.

This small bed-room off the parlor will be very genteel and handy into which to introduce visitors for the night. Yet as the large bed-rom will be the dormitory of the master aud mistress of the family, it will also le convenient for a chiddren's sleeping-room. It is at least me of the handiest litule furms imaginable. Its size will depend on that of the howse and clr sets. In a 15 feet sided octagon it would be 7 by 7 , becides thuse corners cut off hy the closets. In this cave the bed must stand against the winhow, and the eleset-door open into the close?, unless it is connected with the parlor. Yet if the elosets are small, and the all is make as drawn, it can stand ngainct the pather. door when used with the large bederom, hat rerneved :.rainat the bed room door when used in romaretion with the parlor. But if the sides are 18 feet, equal to a 36 feet square homse, or one 30 by 42, it will give us a nine fect siluare room, besides those angles at the closets, together with good-sized closets, in which case a bed can be placel several ways. In this case, the finur large roums will mensure 18 hy 16 , Jess width of wall, which will come right for carpet, of which each room will hold 30 yards, and be of full size for comfort and use. At the doors a deal of wear will occur, which those corners of the carpet turned over or under, or cut off and used as a rug, will just serve as a resupply.

13ox-hoards, as described for making the outside wall," rome 10 feet, and therefore this will he a convenient size for the house. This will nake the rooms, walls, and boards deducted, about five yards wide, another convenient size for carpets.

But a house 20 feet sides will cost no more for doors and windows, and but the merest trifle more for floors, partitions, base-
boards, lath, and plantering, cte., and will a hundred-fold more than repay in usefuthess this trifling extra eost in money. The outside box-boards could then be spliced easily by cutting one board into four picces, and splicing by simply nailing on a batting acruss the $p^{\text {late }}$ of junction, extending a foot or moro on each side, and emsisting of any piece or pieces of board, of any shape and length at hand. This will take twenty boards to form one tier of boxes. Or the walls could be made 21 feet just as well, by cutting two five and two three-feet pieces from a 16 feet board, the five fect to splice on the outside, and the three feet on the inside box-board. 'This splicing a board by nailing a - piece on to both, is tle wowt of only a minute. This will render your rooms $21 \times 18=378$ square feet $\div 9=42$ yards-large fine rooms, and make a fine-looking house. Yet ldo not see how it conill cost eser 500 to $\$ 75$ more than one of 15 fect sides. ${ }^{29}$ Aud since the rom occupied by entry and stairway is the same in all three, all this increase of room will be in the roms.
let us se how mulh rom it will give compared with a square house of bike size. A homse 30 fiet stpare, with a through entry of eipht fert, gives us !oto spuare fret in the hoase, less 240 in the entry, or only titio in the mume, and only two roms on a flow, unlos the entry is ia the midele, which gives us mily 11 fiet wide mons, or 11 hy 1 a , or 10.5 in cath, $\div 9=19$ sthire

 -

 purpose-this complete, that awhand;" this compact, that
 ing each chher-a pathr, diang-rom, kitelen, two hed-roms, and cight chat-, hesifo front and back conty, and stairway, and a dunt, va. "r-hat ondy illy-contrivel, long, and narrow partor, bod-rom, kit.lum, and diting-room, separated by a thomerh entry, the stairs whamly to at least two of the rooms, and not one place for a cos.t (sect fig. 16), nor any place for chimmey, unless it is taken right out of whole cloth; whereas ours takes up no
room at all which could or would be appropriated to any other earthly use, but only taking a small unused corner off from our broad stairs, and a capital place for a dumb-waiter besides. See how many ends ours subscrves, and how few yours.

But if your square-angled house is oblong, say 22×38, the matter is much worsc, by taking more room into the entry, and giving only two rooms, 14×19, or only a parlor and back parlor, and obliging you to build nnother house out back for kitehen, pantry, and other such uses. Is not our plan incomparably the superior, in every piossible aspect? That gives you only 532 square feet within the rooms to our 944 , or

$$
\frac{0.48}{5: \div 2} \div 11=\frac{86}{48} \div 12=\frac{7!}{4} \div 4=0
$$

as large again, all but ${ }_{5}^{k}$ of one.
But if our sides are 21 fent, our rominside is $21 \times 18=379 \times$ $4+14 \times 14 \times 2+12 \times 12=2,048,{ }^{*}$ and our net room within the romms, 12×12 stairway $+8 \times 8 \times 2$ entries $272=1,756$, while the net room of a square house of the same size would he omb $42 \times 842=1,764-8 \times 42=1,426$, which reducerl by division

 by war plan, beth kithen and pirlor jnin diansg-roon-an arrangeneat the supert, convenic of whin we re pertfully a trimphantly submit to every practical househequer and commonsense ubserver.

[^7]
Now here are two gool-sized comutry houses, one on the old, the other on the new plan. To say that the new is as good agrain as the old is far within bounds. It might cost a hundred dollars the nost, beause of the greater number of inside walls, an increase, however, utterly insignificant, compared with its increased utility and heanty The mumber of windows would be the same, twelve in each, of dours the most in ours, the entry doors the same in both, hut ours gives two the most rooms, and four extra doors into the stairway, bexides a door to each eloset.

63. the cellar gtoky.

But let us descend into the ground story to see what chances for combeniences we find there. We will have the main stury two or three fict above the ground, and enter the cellar story under the stairs which en up to the main story, or at any other place destam beat; will huid eight sumare pillars in this cellar, one: wader each comer of the staisway, and one under cach inner anghe if flume four tianghes, omt of our comerete, making the box in whin to cant theth lig maling tow:ther at thoir edges frome brardeas lome as the story is hish, and as wide as we wi-h tle
 ionjume, an! if promed you can now make walls, at drawn

 bor-the hitchen ho.fing hated by its own eonking fire-while tho

A kitchen helow, locatel as marked in our pograving, in which to du ui the romish and bald smelling work of the family, will be desimble, and am be ventilated throtgh the eomer of the stair. way betwero dining-roma and kithen.
liy the side of this work-kitchen or wash-room and ice room near the pantry is an excellont, phace for a mill-room, which is all the more consmient on arcomb of the lumb-waiter coming into it, to transpert milk and other things up and down.

Adjoining this wash-room shonld be a cistern to receive the rain-water from the roof." ${ }^{4}$ This can be located at the right of the buck entry, and will then, by means of a puinp, furnish

Fis 81.

Water to the boldroma nliswe-the rlemet lexatel in the nezte

 clusets, arljoining led-rooms, are must comfurtable and luxurians ineled; or it catu lie plared at the left, which will be under the kitchen, and adjoining the work-kitchen-also very handy-ny in any other place chosen, yet I think the latter the best, especially since lead pipe can conduct the water from this cistern, wherever located, into the bed-ronm clesel just mentioned.

A tool-closet for sparles, shovely, hrees, etc., will be handy either in this cellar, near the back entrance, or in the barn; and if in this cellar, on the right as you enter is a good place.

The adjoining space, W, will make an excellent place for wood,
which would naturally come in at the back-door, and will then be near looth the furnace lelow and the work-kitehen as well as the foot of the stairs leading ahove, which, obviously, should start near F, because you will need in desecmding to land near your work-kitchen ten times as often as anywhere else, and in ascending to land at the kitchen above. And then, too, if we must sacrifice or discommode any room above let it be the liedrome, lecanse we ned to go from it up and down less than from any other room, but most from kitchen. The forst of these stairs will also be near the dumb-water-amother fine arraugement. They will also bo in the large sinare below, and therefore handy to all the eellar rooms. The balance of the rooms can be partitioned oil or not, and used as prefirred. 'Ihere get remain five mapiropriated widedws, two south, two west, and one northwest. Dispuse of them to your liking. One of them would furnish at fund place for an ice-hane. One of those to the north, alrealy appropriated to wool, will make a frod one, the wood being shifted to some other, because firthest from furnace, yet would le under slerping-room, which is hat, while that to the south, mjonining milk-rom, would be handient, as cooling milkroom lelow and lautry above; and if richely made, ${ }^{42}$ neither furmace nor southom aspect will serionsly allect it. It should be at leat l:xas, though the larger the better, and might occupy the whole shae botwen milk-room and entry, and be filled at wimlow or entry. Its being miter an upper room will not hart but ather bonelit the room above, unless it be a bedronol."

We montionel it pace for wood, not becume best for heating honses, hat beramso wenerally used in the eometry, yet decidedly prefer coal as hambier, fur a fire once kimbled lasts all day, is several times cheyre, costing less than even the mere cutting and holinig of wom, sives a better becomse move miform berat,
 heat, whertas that of wool is fitful; amel the gas of wood is quite as dheterious and likely to eseape as of coal. Yet when that invetion, alrealy barely mentioned, which converts woud. gas into lightingers, so that wo can light our houses with the sume wood used to heat them, wood may be cheapest. Indeed,
since a cord of wood is said to furnish ten times more light than a ton of coal, we could burn our surplus gas early in the dnytime for heat.

64. Stairs.

Starting our flight of stairs so as to land at the door which passes from stairway to dining-room, varying our starting-point as our height of cellar may require, we turn on a brond stair to the left, leaving room for the parlor door, and turn at every coruer on a broad stair, as often as necessary. If our stairway is ten feet square, and our stairs are three fert wide, we shall have a sun of four feet at each turn, which will carry us fairly nhove the bed-room door by the time we reach it-it being placed in the corner next to the kitchen, and the kitchen door in the corner next to the hedroom.

In a 15 fret ortagnu this story should be about 10 fect high, and the stairway 10 fect sumare, which, if our stairs are three feet -large enough for this sized house-will give us a four feet rum, and require us to tiwn three times. If our rise and run are equal, and we crowd our parlor passigoway into two fect, we shall have a two feet landing-place at the top of the stairs. This is rather narrow, and our stairs are too steep, yet it is a small house, Still, either a narrower stairs, or a 11 feet stairway, or lower ceiling, will give us an ample broad stair above, and an easy rise compared with our run. But in an 18 or 21 feet sides, our stairway may be 12 , and stairs 3 ! feet, which will give a run of tive feet and rise of four between each irond stair, which is an easy fise for our rum. If our walls are 12 feet high, which they shomld le to lowk and be well, ${ }^{2 n}$, we shall have to tur on only two hroad stairs, and will land over the bed-room door. Ciremlar stairs will get us up sooner, yet aro much niore costly, and unt as hamly, yet look well. This gives us a good stairway, and perfect access to and from every roon above and lelow. Our fur-nace-chimney will, however, interfere a little with our parlor door, unless-which is possible, yet have it clear the stairs-we place it a foot from the corner. Wo then and soon enough turn to the left into the east chamber room ahove, on tho north side, marked 1, will continue this same platform right on around the
width of the staiss, enter from it into every room as we pass, clear round to rooin marked 2 , and, leaving barely roum enough to pass into 2 , start our stairs for tho cupola in a 15 or 16 feet octagon-for it will not bear a third story-which can be made both narrow and steep enough to give sufficient head room to clear the main fight. Hut in an 18,20,21, or larger sided octagon, and a 12 fect stairway, we shall need a third story to make the house louk well, and, having a five-feet run, can get riso coough to clear our required head room. Liko remarks will apply to the stairs from the third story to the cupola.

It may be best, however, even in an 18, 20 , or 21 feet octagon to have one or two of these upper rooms the fill size of one side of the housi" ; that is, to lave one or two good-sized roums alove, rather than so many small ones. In this case the north room at the head of the stairs now marked 1 and 2 , need not be partitioned ofl, which will enalle us to start our next flight of stairs back at the door into 3, and so to completely clear the door into 1. Or, if you sce fit (1) start your stairs at any other point, or to arrange them difieronty, the roon will be true relatively of rise and even, and startiag and landing, in that case as in this.

The dumb-waiter can, and should be, continued up into this story, as mathed, which will render the aljoining rooms very handy as nurseries, and in cases of sickness.
55. CDPER STORIES.

A 15 or 10 fietortacent, to leok well, Nould be only two stories nlowe the cellar, fle fir-t 10 or 11 fect between joints, the other
 sidns, or latser, the matin stury should be 11 or 12 , the next 9 or 10, and the "plecr. This will renter one of 18 feet sided rather ligh fir its breatth-yet, I think, none too high. Most houses are puite tou low for lomss, while I go in for height in houses and roothes.

Asto the partitimintr offof our rooms, I seo no plan better than to frollow tin pattom of the story below. In a 15 feet octagon it would be best th have hut one window per side, but in one darger, two windows on the silles of the four large rooms are ardmissible, perhaps best, as breaking the monotony of one per side, and ena-
bling us to partition off our upper atories so as to get 12 rooms per story, eight square and four irregular, besides a closet to each square room. This arrangement, in a three-story house, gives as 29 rooms above the cellar!

But if four large rooms are preferred to eight smaller ones, omit those separating partitions. You can then enter this north room either at the top of your main stairs, or pass around to the foot of the stairs above, as may be preferred.

One other feature of this plan is, that it admits of great variations in partitioning off your housc-an advantage well worth considering.

Fig. 82.

Moldinas.

We do not propose to take up the generth sulject of moldings, but only to describe our own, which we think an improvement on any we have seen. Plaiuness is letter than fancified ornament, and in biston it is quite the custom to put on only casingy without moldings. But to our own. It cousists, first, of a rather marrow casing of ordinary thickness; secondly, of a strip of inch board, about three inches thick, on which is worked an og, leaving alout an inch margin before the or commences, and working it down to an elge. Nail this on the easing about two or three inches back from its inner edge. Now, if it shrinks, it leaves no erack between it and the easing. It simply shrinks on the easing, not from it, so as to show no open joint. Then take another strip, say inchand half or two inches wide, bevel off its two corners on one edse, so that these hevels shatl bo just equal in wilth to the spare on the elge letwern them, and mail this ma sideways to the og just described, and $I^{\text {laster up to }}$ this. This gives us, first, three or fuur inches of easing, according to how far hack the og is mailed, then the of and an inch of plain surfice, and then this edgewise piece, its inner bevel being just cern with this of, which gives an oetagon inner angle and two outer :ugles. This luols well; but its chicf beanty is, that if it shrinks it shows mo open joints, for this back octagon beveled picee shrinks within, and hence shows no joint between its.lf and the cog, while, if the og shriuks, it shows no open joint between itself and the c:aving.

56. octagonal barns, caretagithouses, etc.

That an octagomal hinse can be partitioned of into rooms and clowets to far leetter advautage than a square one, this work has demonstrated, and any occurant of one testifies. But can it be applied to bims with cqual advanture? It can, perhaps, comparatively, with eren greater. In then especially we need some common center in aud aromd which to work. 'This form will turn the hoads of all the horses ame cattle, atd openings to all the hays and lins toward this center, so that one can pass from bay to stall, and from every part to ewury other, with balf the steps required
in a square one. This is rendered obvions by a law already proved and applied to houses. ${ }^{38}$

This form subserves several other purposes, one of which is, that it gives more sides, and hence, different bays for difierent things, than a square barn furnishes-one or two each for cattle, horses, hay, wheat, oats, straw, stalks, etc.-and will furnish many more handy places for, different things. For reasons already shown, it is both more compact" and more capacious for its outside wall, than a symare or oblong. ${ }^{3}$
If of average size, this form will enable you to Lurn around in this center, or drive wagon and cart around in a circle, and close to the inner end of each bay, thereby reaching all, and twaing round so as to pass out where you entered. This ennsumes less watl-renm for entravers, and saves backing out, hesides firniching just the shuperl flour refluired fir thershitg with horses, viz.,
 in any and every aspect, tho oftanmal firm of barn dacilatem all the ends of a bam far better than the square.

These same principles and remarks apply equally to wasonhouses and other outhmidings. Still, it is hest to unite just ge many objects as possible with the harn, so as to need few if any outhouses. 'Thus, to ajpropriate one octigon stde of a barn to carriage and harness, is far better than to have the carriage honse separate. For the same reasons that we recommended one houtio and no L or T additions stuck on, ${ }^{34}$ wé recommend one barn ahd no outbuildings around it. And this is by far the most ecunom. ical. To illustrate by appealing to the eye.

Let the larger figure represent the barn, and the two smalller the wagon-house and corn-crib, or any other outhuildings; now the walls a, b, c, d, and e, represented by dotted lines, or five out
of twelve, are soved by our plan, but lost by the usual one. And this loss apprtains to fomendations as well as sides. And then how much handier. ${ }^{30}$

A few gemeral olservations on barns must suffice. If a farmer can find a knoll or bank, so that he can drive in on to his main' flon, several feet above the fomblation-and the higher the better, for it is casier to pitch down than up-so as to have a cellar or basement story, say 8 feet high, and arrange bins under his Hoor for carrots, herts, petatoes, turnips, ete., so that he com drive in on to the fleor and dwip them right from the cart down a hatchway into eath hin, he will save balf his labor in hamdling them. And by arranging the thoor on which the stock stand a foot or two below the barn forer, the cattle can feed off of the barn floor. This phan has several alvantages over mangers, one of which is, that, in tuming their heads, as in fueding, they do not drop their hay or grain under their feet, but only on to the ham flow, :nd whinn their reath. In this, case, since the heads of the cattle are ower the ham flome, their breath is not ennfued, but asomis reatity, not into the mow, to vitiate the smell of their fonder, but into this center, so that they get far better air-a point as important, relatively, to boast as to man. This plan gives seveab fect mbler them to receive their mamere and keep it under conteral in a bondy, so that it retains all its original virtues; whereis, if thrown out, and esperially under the eaves, or if the water from the harn-gat rums off, it loses a large proportion of its fertilizing doments. Manure should always be kept under cover till drawo ont, and then shand be sprad and plowed ubder the very day, and, if posilile, the very hour it is drawn. The had stnell from maure is caused by the escape of its nutritious elements.

Especially showld the liquid or minary portion of manure, its very best part, he savel; wheras it is now mostly lost. A good plan is to put dry muck or loam behind cathle, to soak up this element, and retain its vithe till applied to the land.

And whe, pray, did nature render human and animal excrement so offinive to ege, smell, and taste, but to induce us to bury it, that it may again be transformed into vegetation? Is it not a sacred duty to save all there is of both human and animal
excrement, that it may enhance food? It is an instrumentality of life, and therefore to be counted both valuable and sacred. Yet how often do we see it running perpetually from the farmyard into the road, or some rill, to be lost to him, but not to the earth; for, passing into gas, it permeates the nir, and is from it taken up again by vegetables. Nor should human excrement, as now, be masted, but provision should be made in every village and family for restoring it to the earth from whence it has been albstracted. Incalentably womld this course, if gemernlly adoptel, multiply, and therehy cleapen, lumam and mominal food." an Indeed, ar ahmont infinitely impertame is this metter, and so profitable willal, that men menst see its force and nolopt it. Life itself is not more important; for whatever enhances-, food increases life. I repeat, then, plan your barns to keep all the manure housed till applied.

That the gravel wall is exnctly adapted to barns, is obvions. They consist mainly of wall, and the gravel wall is far better for a harn than boards or stone. It can be plastered on the outsile with common mortar, or an addition of coal screenings, ${ }^{9,9}$ or left rough, as the builder can afforl.

As to the cost of a frame, as compared with a concrete bam, I can not state, but as our upper story ensts only $\$ 50$, or less than four cents per rumning foot, the walls of a barn 40 by $\mathbf{4 0}$, and 20 fect high, at this rate will cost $\$ 68$, and could be at least built for $\$ 100$, with any sort of coonomy and management.

A large barn is far preferable to a small one. Does not every farmer lack harn-room? Ilow many things ha ie you got, realer, which ought to be housed, and are rapidly decaying for want of it? Would not more barn-room pay many times over the interest on its cost? Then let farmers huild larger barns; expecially since large barns are relatively so much cheaper than small onso. To see stacks of hay and stalks standing out of doors, and cattle "run out" winters to eat them in the lots, is poor policy; for hay wastes by summer rains, wastes when fed on the bare grou:n, wastes by storms during its use, while the top of the stack is off, and wastes by taking n much larger quantity to keep cattle equally well out of doors than in. Nor should corn be allowed, as now, to stand out till its stalks are nearly spoiled. They
lose a large proportion of their virtue by being exposed to rain and sun. One boad cured muder cover is worth four cured out. Now make your barn and its floor large enough to take in your stalks, and thry can be stacked on poles thrown across girths five or six feet high, so as to he well aired, yet got into a small compass, and the extra virtue of your stalks as fodder will more than double the interest of the money spent in endarging the bam. Corn-stalks som perish if out in the weather, yet mako the very thest of fodder if cored under cover.

To farilitate this and ohber like ends, and give cattle sun, it will quit cost to have a part of the roof made of glass. Its cost is mot much more than shingles," and allows you to have sum in your larn, with which to dry potatoes, corn, hay, ete., in doors, and will he found very uscful for a great many ends of which we do not now dram.

Nor can I see why two or three stories on hams are not ats advantarenes as on hunses. A meightor of the author drives his grain in "pon his serend story, where he threshes it-the horsepewer beine below-which allows the straw to he tumbled down into the gard befow, instand of having to be pitched up on to a stark, and ke:s the grait siti down throwg on to the main floor, where it is clamal, and parses finn the tail of the fonning-mill right dewn into the grain-hin, still helow, in the basement, from which it is lowled into the wasm.
In a drat variety of was, momes spent in erecting harn conrenioner, wili save time, maney, produce, every thing. Wo give no diamme for hams or cartage houses, hecause we have neither stadini mer writell on details, lat would leave them to
 and tate; but feel aswerd that the octigon form and gravel wall are peeculiarly arpicable to barns and outbuildings as well us to dwellings.

67. the board wall in place of frameg.

At first we considered the hoard-wnll plan, brought forward conspicuously in the preceding edition, so inferior to our concrete material ns not to deserve mention; yet have finally concluded to describe it, especially since it may benefit some builders, yet can injure nonc. The author built, and lived several years in, a house of this kind, and found it much cheaper, and he thinks better every way, than a fiame house. A master builder in Bennington, Vt., has crected several houses in this style; and, in one of his contracts, was left to chouse fur himself between the buard wall or frame, at the same price, and chose the former as chenjer; nud its owner expresses himself as far better satisfied with it than with a frame house.

A framo house, unless "filled in" with brick, is very cold in winter and wam in summer, wherens our board wall is better than any filling in can be, besides being far cheaper than the frame house, without the filling.
The simplicity and ease of its construction also strongly recommend tho phan-fir any tolerably ingenious man may put it up. Ilaving erected and plumbed his inside corner bonrds us guides, all he has to do is to lay on boards straight, and nail them duwn.
The plan of construction is this: Inave boards sawed half four nud hait' six inches wide, and 1,1$\}, 1$, or 2 inches thick; erect and plumb a board at carh insite corncr, and perhaps one in the middle; lay down a wide, and then a narrow, course of boards all round the house, at the corners lething one board pass clear out to tho comer from one side one time, and the nest time letting the board from the other way rein clear out; and thens proeced, tier ly lier, till high enowgh for window frames; then insert them, and proceed till high enough for the flom timbers, which are to be laid right ugen this boind wall. l'repare the place and first rough frames for the doors and windows, as already described for the gravel wall, ${ }^{16}$ or by simply settiny up two boards as wide apart as window or door is to be, making allowance for weights, if your windows are to be run with them-and the window casings will just form the required box for them to run in-and nail
through this board into the ends of your wall boards. The widest of gour wall boards single will do, yet two nailed together will make it the stronger, or less liable to shate when walking on the floor above-and the second board should be mailed on after the tirst has been mailed to the wall boards.

Arrived at the tops of windows and doors, let your wall boards extend over them. ('arry up inside partitions along with the outside walls, and let a loard every few rounds project from the insite walle thrompla the outside wall, and be nailed to it, so as to bind inside and ontside walls firmly topether.
liy using altermately a wide and then a narrow board you save lathin!, for as every alternate bard projects an inch over the one next above and helow, the plaster clenches into these openings. I'his methon, by saving beth the dath theniselves, and nails, which cost sume two conts per yard, and then putting on, which costs some four centwmore, makisa large saving-namely, twelve cents

Amother methed is tu take hards of equal widths, and lay one out, one haff, there quarters, or one inelh, and the other in, therely fimming the same openings for the plater to cheme. In this eaw the hombe may be finer, live, or six inches wide, at pheasure.

Still amother phan is to lay the outsite of the wall up even, by tahing lowats hatf four and the other half five, or half five and half six inches wide, and lay iug them even on the outside, which will hring the insile umeven, so as to buld the platering.

One ofhar moithol is to lake twards of equal widh, say fivo or six imher, and, after mailing one down, put on sticks erosswise, as in sticking up hards to dry: mailing through sticks into boards, then leaving half the space opon, which phatering will fill up, and render lnith wam and stromg. I have seen them built thas, yet not tried this methent.

The mamme of fanding them together is by driving tenfemy nails duwn throush each hoarl, sonve three, four, or five feet apart, into the hearal below. This remers the comers, and all the perints where walls intersest, profectly solid, and the whole immovable by winds.

Another method of fasteming is to drive a nail or two at some given point, into cight or ten boards, then bore down through
all with a half, three quarter, or inch auger, and pin them all together solid. This makes the structure all the more solid. A dowel pin in the end will increase the solidity, yet the wall will be strong enough without.

TILCRNESE OF BOARDB,

If plastering will adhito to two-inch spaces as well as to oncand I do not sce why it will not-why not saw our boards two inches thick? Why snw boards up thin only to nail them together iagain? I have not tried it, but I should think two by four and two by three would bo as well as one by four and one by thre-hetter, if the plaster will only stick till it hardens. This will save something in the sawing, and half in the layingfor a thick board can be laid as quickly as a thin one.

Another sumpestion: Can not scontling and wany-erged pieces be used for half the wall in place of the narrow hoards? Suppoue, instead of first sfuaring tho log, it be slit into two by fuur pieeses. This will leave the inside pieces square two by four, and all around dice log the slab part will be in wany-edged pieces, with threo sides sifuare and the other.irregular. But the plastering will fill up the irregularity. 'This will take more mortar but less timber. Where mortar is dearest, this suggestion is useless.

Any kind of timber will do-hemlock, poplar, willow, oak, coarse pinc, maple, beceh, elm, huttonball-any and every thing, bowever knotty, or shaky, or wany -all fill up and count equally with clear stuff. And the lime will prevent its decay.

Sixteen feet is one of the most common lengths for box loaide, and will be just the length for a sixteen fect oetagon house. liet to join them is perfectly casy. If you would make your walls twenty feet, eut sisteen feet boards into four pieces, and use atho sixteen and one four feet; and thas of other lengths. Short pieces can be laid on and nailed down, so that all the odds and conds cin be worked up. In laying up it is not necessary to cut each board scparately as it is laid up, but getting your lengeths, sily letween windows, or from winduws to corners, saw off all at once, enough to carry up that section, nail them duwn, measure, saw, nad nail another section, and so on. Yet once above all openings, go all around one board at a time. Two can

Work to admizahle advantage: one on the ground, to saw and fit, and the other on the scaffuld, to place and fasten.

58. cost, absolute and melative, of the board walel.

"But what a raft of timber, and what quantitics of nails, this plan will consume!" it is chjected. Let us see. If your house is sixteen fert ortagon, and your boards half three and half five inches wide, averaging four, a sixteen feet board makes three boards, and carries up one side three inches, and four boards one foot, which takes sixty-four feet per fuot per side. If your stories are ten and eight feet, it will reguire $18 \times 64=1,152$ per side $* \times 8=0,216 \times \$ 12$ per $1,000=\$ 111$ for the outside wall -16 windows or doors, saty 216 feet. But at $\$ 3$ per 1,000 it will cost only $\$ 72$, at $\$.5$ only $\$ 45$, and at $\$ 15, \$ 134$. Hut since the most common lumber, the tops of trees, pine and hemlock, and any other coarse kind will answer, it can probably be got in most localities at from $5 \overline{5}$ to $\leqslant 4$.

The iuside walls will cost in the same proportion. If lumber is $\leqslant 4$, and the insile wall half as long as the outside, it will cost \$108-less hy considerable than a frame house.

Then the putting up. If a fair carpenter could not put up one foot, all around, per day, be must be slow. This would require him to lay less than 1.0 b bards per day, or one board in about five minutes. liat he cin do more. An ingenious laborer can build a frot gire day all roum, and put up the house in eighteen days, excep the flow timbers. Frone $\$ 20$ to sits should put it up, which in-imhes the refising, whereas this for a frame house would require fition or twenty mon half a day, or eight to ten of the twenty days' work repmired to put up the board wall.

In building my old house, we were all astonihed that so litto work put up sur much, thorsh it was new work to all. My cargeuter satid he would wot have put upas harge a frame merely, for any less than $\$ 100$, wheras this cost, in timber and labor, lest than sko. It twok ahout twenty days' work, ten of carpenter and ten of common labr, to put up my bard house, twenty-seven by twenty-seven, and twenty-two feet high, including placing the floor timbers and ratters. And this leaves your house the same as lathed, except over head, and all ready for mortar. Yet some abatement
must be made, because it will take more mortar and work to put the first coat on this wall than on lath, and unless pains are taken to lay it straight, more trouble to get tho walls perfectly true.

The outside can now be clapboarded, yet the house will be wariner if plastered outside first. My own was thus plastered. It took a mason and tender four days, besides mortar, probably costing $\$ 12$ or $\$ 15$, but is much more than enough better to quit cost. 1 No pains need be taken to smooth it off, but only to stop up the open spaces; and coarse mortar or clay is as good as any thing. Nor do I see why common mud, or any soil, wet up, will not do. This will make the house very warm in winter, and shut off all wind, hoth from the floors and walls; herause it can not get in to the house as it can in a frame house, through the clapboards, and, therefore, can not get to, ol pass through, whatever cracks exist in floor, ceiling, and wall. ${ }^{28}$ It also excludes vermin. ${ }^{\circ}$

But a single objection has ever heen urged against it-mamely, that in damp weather it swells, and in dry shrinks, thus leaving doors and windows disjointed. I experience this difficulty only slightly in my own house; yet in damp localities it may be greater. Yet by plastering mine outside I probably excluded dampness and air frotn getting access to my boards, and therefore forestalled the evil.

59. plank walle.

Another form of building board walls consists in placing plank cdycuise, one above another, and dowelpinning them together along the walls, and halving or dovetailing them at the corners, and building the incide walls in with the ontside, as you go along up. This takes less timber, by one guarter, if three inch plank is used, and two and a half, and, I think, even two, will do equally well, which will cost only half as much, or s:0 S , or S51, at $\$ 3$ per 1,000 . That is, an octagon house, 16 feet sides, embraces $128 \times 18=2,304$ surface feet, less 24 , outside dunrs or windows as per our last plan-say, $7 \times 4=28 \times 24=672=$ $1,732 \times 2$, for 2 inch plank $=3,464$ or $\times 3$, for 3 inch $=5,194 ; \times$ $\$ 8$ only, equal to $\$ 3680$, or $\$ 5629$. This kind of wall can bo put up for about the same as the other, yet will require a curpentor, and can be clapboarded on the outside, and lathed and
plastered inside-lathing on cross laths set sixteen inches apart, up and down in place of studs. The floor timbers rest on this wall. This also makes a warm and very strong house. The Williamsburg octagon ${ }^{11}$ is made this way. I intended to have built my new house on this plan, and ordered the plank, but meanwhile coming across the gravel-wall method I substituted it instead, and am glad 1 did.

60. the poor man's cottage.

Sufficient consideration has hardly yet been given to the poor man's cottare-to a very cheap tenement-such as the poorest laborer or Western squatter can afford to put up with his own hands merely, "just for now," till he can procure something better-something which can be rendered comfortable for from $\$: 30$ to $\$ 50$ or $\$ 100$. The poorest laburing man can earn at least twelve and a half dollars per month, or $\$ 150$ per year, and save st per wometh for a prosiective home. lhut homo save it, if he has a family to fecd and clothe, and rent to pay? From his forl alone, if in no oher way. Nicture's wats are few-artificial wants comsume by fir the largest part of human time and earnings. To feed a luman being we!l, so as to kecp all the bodily and mental powers up to their fullest action, costs very li:tle. Gne prund of wheat and a few sweet apples per day will do it. Thr the finilest possession of human porer, meat is not neessary-is probly mone prejulicial than otherwise, for both the stringest mill the fle tert atimals eat no meat; and Liebig proves that what we frommat cromes first from the vegetable king.lom; and men alnumd in every community who have never tasted it, yet are as strong and healthy as meat-eaters. Wheat is the very limat single article of human diel, and contains every in. gredient requivice to forl man peifectly. Now suppose yourself the poorest man posible--nut worth a dollar in money or credit -jet an hemest man always will have credit wherever knownbut able and willing to work-and poor men can be healthy if they oley the health law, which poor persons should do first, for on this all depends. Buy a bushel of wheat with your first labor, Boil a pound per day-not overboil, but leave something for the teeth to do; and, if married, it will last yourself and wife a
month-less, if you have children. Add two bushels of sweet apples, which, besides flavoring your wheat, are highly nutritious. Food need thus cost only three or four days' work per month, and clothes two more, with incidentals, half a month in all, leaving half your earnings to go toward a house. Forego tea, coffee, tobacco, all fancies, all luxuries, every thing not alsolutely necess:iry, for a home of your own will be the greatest possible luxury. 1)ress plainly, even cuarsely, till you provide a house. By theso means you can easily lay up at least $\$ 50$ per year, now spent on extras, for looks, taste, pride, or passion.

Next, buy or lease a few rods square in the corner of some field or woor, say for. $85, \$ 10$, or $\$ 20$. Yet here is a difficulty. Farmers hate to sell to poor neighbors. But observe the reason, They too generally make themselves obmoxious by various means - by mischicvous children, tattling, sometimes petty pilfering of fruit, nuts, possibly erger or chickens-but by a life of honesty and goodness from boghood you can establish a name, and make any neighboring farmer glad to sell you a small corner. Chooso your location, if possible, elose by your material, a gravel bank, ${ }^{9}$ or stratum of clay; ${ }^{33}$ dig your foundation 16×14, if you can aftird to build no larger-better thus small than to have to pay rent; excavate four feet deep, or if not able to afford a floor, dig a trench four feet deep and one foot wide, and build a nico solinl stone wall in it, and extend it two feet above the ground. Or, if stone is not handy, buy a barrel of water lime or cement, at $\$ 150$, to mix with gravel and stone for the foundation, ${ }^{12}$ and add two barrels, or from five to cight bushels of lime for tho wall; ${ }^{10}$ or if a lime-kiln is near, buy or beg some of the old, dirty, cast-of lime lying all around its mouth, costing not ower $\$ 2$ or $\$ 550$; ald four boxboards, sixteen feet long, for the side of the boxes, ${ }^{14}$ four for inside boards, the ends cut off serving lior cleats; ${ }^{44}$ or, if you can allurd it, double this number for two tiers of boxes, ${ }^{14}$ and as wide as possible, and as near one width as may be; get 100 laths to nail across these boards to keep them from spreading, ${ }^{14}$ five pine boards inch and quarter thick, sixteen feet long and eight inches wide for window and door frames, ${ }^{10}$ four boards sixteen feet long and eight inches wide for top boards," five floor timbers, sixteen feet long, and two or three by eight for rafters,
and any wher poor stuff you can get cheap for incidental purposes; add a few nails; provide saw, hammer, square, jack-plane, compasses, shovel, hoe, and wheellarrow; make a plumbob; and you are ready to begin the wall proper. All this will cost you from $\$ 10$ to $\$ 15$, according to prices, and how many of your tools yon can horrow. You will now have some $\$ 20, \$ 25$, or $\$ 30$ of your sio left.

Your cellar wall is one foot thick, but eight inches will do for your house. ${ }^{16}$ This leaves a two-inch projection outside as a water table, and to rest your boxboards on, and inside on which to rest your floor-timbers, which, if you are able to have a floor in the start, you can get and put down now, but if not, live awhile on the bare ground, and put in floor afterward. Next make and place your door frames, of which perhaps you will want two, thus. Plane three of your 8×11 inch pine boards, fourteen feet long; saw two of them in two for the uprights, and the other for the four bottom and top pieces, and nail them together. ${ }^{10}$ Next facteufour strips of boad, as long as your wall is to bo high, and three or four inches wide, firmly at the bottom, close to the comer, and even with the inside of the wall, so as to be within it, and mail your inside boxboards thereto, having first sawed them to the exact length, and eleated them to prevent warping. ${ }^{10}$ I'ut up two sixteen feet boards on the loug side, and then mail the other two outside boards upon their ends, which will leave your boarts on the short sides to $p^{\text {mogect }}$ past the corners, on which tusecure the ends of the sistecon feet boards, therehy saving ontside stambards; see that these boards are true and right, and nail on lath or strifs acress their tops and brace their bottoms to prevent all sprempling and moving; and mix, temper, and fill in your lime, "rawel, and stone concrete,' or your clay and stome. $0^{33,02}$ If you have two sets of boxboards, reprat this process, and you are now hish enough for the window-fianes, which make and phace as for doors;" and then proced till as high as you design your house to be, saly eight or nine feet above the floor timbers.

You now want a reof-make it thus: Continuo one of the long sides up two courses higher than the other side, and make the gable ends to slamt evenly from the lower up to tho hicher side. Bevel off the top with good mortar, and lay on your eight-inch
boards all around, ${ }^{18}$ observing, after your walls become six feet high and upward, to brace them well, for they are soil yet, and liable to fall. If you have other work to do, let this wall now stind and season a few days, but if not, put on your four rafters, first beveling one upper edge on each end, so that they will set level, and the whole of their lower edges, to correspond with the pitch of your roof-boards, and nail on these boards, first, if possible, plowing a groove some three-fourth inch from each edge on their upper side, and to joint and match them will make it atill better; and saw up boards enough to make battens, say throe or four inches wide, and nail on over each joint. These grooves will now prevent all water from passing into the joints, and send it along down and out.

Prolably a better way, where it can be done, is to mix five parts of fine sand with one of Blake's Ohio paint; whito lead will also do, and wet with linsced oil till thin enough to work well; spread it over the joints, say a strip an inch wide, and bed these batten boards down into it.

It is leest to nail on weather boards all around the top of your house, and make an eaves-trough, so as to keep as much, water off from the wall as possible. ${ }^{22}$

You now need a fire-place and chimney, ${ }^{42,42,44}$ two batten doors, hung on leather hinges, with wooden latches. lateh-string out, for you will now begin to feel rich enough to shelter a poor neighbor, and two windows, costing say $\$ 5$ or $\$ 1$. But since a goodly number of your $8: 50$ still remain, spend them in adding any improvement decmed next most desirable, among which is a floor, if only over a part; to make which, lay down seven or eight floor timbers thirteen feet long, and 2 or 3×8, and nail down the best flooring you are able to procurc. Plaster it yourself outsids and in, whenever convenient.

To only one evil are you now exposed-dampness. My own walls do not show the least of it, yet this may be owing to my material leaving so many honey-comb openings for dead air all through my wall. I also have porticoes at each story, except tho upper, yet see no dampness there even. My foundation, too, is protected against the access of wet. to it. Unless your wall dif. fers from mine, no dainpness will trouble you, provided-and this
is indispensable-you have the eaves project duly, say a foot at top and buttom over the walls, whith can be eflicted by nailing a board on the upper side of the roof boards at top, letting it project as far as its width will allow, and another on the under side at the eaves, thus shouting the water still farther off.

For emigriants to new countries or Western prairies, this plan is far better than log-houses, becanse so much cheaper and warmer. In prairie lands wood is dear, but gravel abomods everywhere, sume two fect bencath the soil. ${ }^{9}$ This saves all carting, except of boards and lime, and the latter abounds all through the West.

SUBSEQUENT ADIITIONS.

This plan has another great advantage over log-houses-that of making additions and improvements without tearing down or loosening the part alroady up. When a legrohouse rots down, or its occupant cen affird to buifl something letter, it becomes a dead loss. Nut so with our pian. As soon as alile, buildthree walls on the highest side of your first one, or that opposite the pitch of roof-and you should, in choosing which way your roof shall pitch, have reference to sulseguent additions, and pitch the roof of the aldition the opposite way-knock out a door-way or two between them; yet you can also phan your prospective addition befine you berin, and place one outside door, in view of this addition. Yet t, make doors any where through this kind of wall is perfectly easy. Aftre latoring another year, and hying up another sino-yet צ-T will now do-you are ready to build your addition.

Your first house, λ., i: 11×14, one side being 1.1 to allow 10 feet roof buards to extemd clear across it, yet have ample length for pitch and eaves, having its eaves at c, and ridge at a; front door, and another deor or a window at g. Now all you have to

Fig. 80.

do to make an addition, is to build the three walls on the riglt hand of A, and the new and old will join at the corncrs casily and completely, if your mortar is made thin there, especially if you knock off and rough up these corners-I joined several walls in this manner-and the addition is ready for roofing, sliding the roof boards of the addition up under the projecting ends of the old roof, and the weather board will make the upper rafter.

But suppose you want to make your addition one story higher, now, or at any sulsequent time, do so, forming the roof as befure; and when ready to raise your old part, saw down through your first rafters in about two places, to enable you to remove it in three sections; knock off your gable ends and lay on floor timbers, build up the outside walls to the height of your addition, make other ga ble ends to correspond with those of the additions, replace the three sections of the old roof, nail on strips of board each side of each rafler where sawed in two ; this will fasten the whole roof ${ }^{1}$ together just as it was before sawing it apart, and you now have a honse A B 16×28, and two stories high, and at a cost not reaching 8200 , with a like opportunity of putting on two nther addi. tions at each gable end, making a house 32×28, and can make a new roof whenever the old ono fitils to answer its purpose; or to make any other improvements afterward which time or means will allow, and without throwing avay any thing previously built.

New country settlers, is not here something worthy of considcration? In fact, does not every poor man need some such plar. capable of being added to afterioard, without throwing away any thing proviously built?

Poor man, does not this chapter give you suggestions worth many times more than the whole book costs?

If objected that it contemplates only a poor, rough house, I answer, better this than pay rent. My father moved into a twelvemile woods, threw up a small \log cabin; open on one side, covered with hemlock bark, with hemlock boughs only fir bed and bedding, and two logs at the right height pr jecting out several feet for chairs. ITe had a partner, carried his ax anhelved and wrapped in a linen clath on his back, drove in a cow, and yoke of oxen, to begin a clearing. The cow was lied to a rather heavy bush, pulled up by the oxen to prevent her straying; yet allow grazing. At night
his co-worker saya," l'll milk, if you'll get something to strain it in." Father, with a trowel, cut large smooth basins in one of these projeeting $\log s$, took his linen ax.cloth for a strainer, dug little holes for bowls, and thus lived from May till Oetoler to put in a wheat crop, and build a log-house. My plan is far less rustic, and better every way than many a bnekwood's settler has been obliged to adopt; those who have more means can make it all the better.

61. associative houses.

Though far from advocating Fourierism, but helicving in separate families, yet a large house, capable of accommodating several families, can be built several hundred per cent, cheaper than scparate houses for cach. 'Thus, foundation and roof for a six-story house cost no more than for a one story, and the outside wall of a twenty feet square house is sixteen times greater, as compared with its inside room, tham one of eighty feet. ${ }^{\text {as }}$ In adlition to this, inside walls bound or inclose two roms, whereas outside walls iuchase but one room-another loss of a hundred per cent.-While outside walls cost twice or three times more than inside ones, which involves another luss of from 100 to 200 per cent. Add only these fimer items together, and they make some four or fine humbed per cent. in favor of large homses over small ones. That is, sixteen fimilies, combining to build one hause to areommonlate eacle family with a given anome of rom, can ohtain live or more times the room for the same money, or as muth rom fir one fith the money, it would cost each to buid a spamate house. We may err slightly, lut wish rather to show the reader how to camvasis this peint than to arrive at accurate results ourselves.

Foundation and roof are reputed to cost forty or fifty per cent. of the entire expense of a house; lience for a six-story house, as compared with one of two stories, they enst only twelve to fiftern per cont. for the same amomit of room-a saving of $\dot{\mathbf{x}} \mathbf{2 5}$ to $\$ 30$ in every $\$ 100$ the hase costs, or n quater or third of the total expence-mo shall item. ${ }^{\text {at }}$ The outside wall of a large house over a small one will save jou, comparatively, from 400 to 800 per cent, accorling to how lange and small they are. ${ }^{2 n}$. 3n, 34 In both eases the inside wall is, relatively, about equal-least in
the small one-but an inside wall incloses two rooms, that is, both sides counts, whereas only one side of outside walls counts, or incloses room. Then suppose outside wall costs twenty-four cents per square foot, and inside wall twelve conts, as compared with the room it ineloses, it costs only six cents, or only one fourth as much for the room given-a saving of 300 per cent. ; so that $\$ 100$ gocs ns far in a largo one as $\mathbf{\$} \mathbf{~} \mathbf{0 0 0}$ in a small onc. Other advantiges of a large house, for several frmilies, over a separate house for each are, that the floor of each story beeomes the roof of the next helow, the heat from each room escapes into adjuining rooms and upper stories, instead of out of doors, so that upper sturies are watm enough almost without fire ; each ronm shelters adjoining rooms agninst heat and cold, which secures uniformity of temperature; the members of each family ean associate with whirhever or none of the others on a friendly basis as they plase, much more frequently and easily than if they lived apart, yot can enjoy just as much sechusion as different families in the same hlock; can serve each family with one well as completely as to dig sixteen wells; can warm the whole honse with ane furmace instead of supporting say fifty or more fires; could attach a steam boiler to this furnace for churning, washing, and other like purposes, whereas single funilies could not support one; and in a great many such ways could effect a wouderful cconomy of the labors and expense of living, including, also, purchasing grocerics, vagetables, wearing materials, etc., at wholesile, inste:d of ly dribbles, and dividing at cost, ns cach wants, thus saving twenty to fifty per cent. on most family expenses, besides all the saving in the cost and rent of house it-clf.

Yet, not having given special attention to the planing of such a house, we append no drawings, leaving readers disposed to as; sociate together in buitding such a house to devise the internal arrangement of rooms for themselves, simply adding, that in the center should be an open const, twenty to forty fect square, having an inside piazza at each story, and stairs ermnecting; and an outside piazaa cither at each story, if all the rooms of each family are on the same story, or at every other story, if they occupy two storics, which would, doubtless, be preferable; and each family occupying one quarter of a story. This would give eight families to a four-
story house, provided each orcupied a quarter of two stories, or sixteen if they oreupied only one story. The inside rooms would then be lighted from the open court, and the main rooms be square, as in the second-story rooms of the author's residence," while the triangular room there cut up into small bedrooms and closets, might be appropriated to entry, closets, stnirway, and perhaps kitchen, unless thought best to put this in the corner next the court. Or, to illustrate: from the same figure, let those large rooms he divided the shint way, one lighted from the court, and the other from the outside, ono appopriated to kitehen and din-ing-room, the other to parlar and sitting-room, and the trianglo cut at pleasure. Yet we leave this mater to loe studied out and applied, or not, by the reader.

Finally, ember, the great omeline ideas of this work-" the gravel wall and octagon fom," we leave at the door of your common sense, to the atopted or refinted, and moditiod or inproved, as each eader phases. That its dotails are complete is mot claimed. That it is at..ppthbe of important improvenents is admittedand this is oue of its beanties, that it admits of so much diversity in its internal armenemmen of rooms, thas suiting itself to tho tastes and wants of all. That it is in part sugrestive, or throws out petaral farts and sumestions not worked out perfectly into detailed spertications-tike a loaf of bread put upon the table, repuining to lwe eut יp into slices, hut the brot-the main thing -thene fir all, is atwalmillom. But that no reader who intends to haild cin read this work with a sermtinizing mind without gicaning therefom a great variety of most valuablo hints, plans,
 Tu inprose his properise homse, even, if he adopts nother the grad wall nor octarom form, se as therely to enhance his home ambints fir the batare of his life, and that it will enable him to save himerlf seores and ceren homireds of dollars in building a home, is :anint ined by the author, and submited to the sound smoe and parical experime of the buidder. And if eriticised, let it be with generosity, for it has been written, not to make money to the author, but save to the builder, even while adding to his "homo joys."

In onomer to aceommodato "Tha Ienple," resilling in all parta of the United Einten, the Publiahers will forward, by return of the Firme Malk, my book named in the following Lat. The pontage will la pre-paid hy them, al the New York Ofice. Hy thin arrangement of pra-paying pontage io adranco, fify per cent. ia noved to the purchaser. The price ot each wrork, including poningr, in given, ga that the exact amount miny be remitted. All lettera
 Clinton Ifall, 181 Nessau Strcet, New York.

Colorks on whrcirology.

Anerican Phrenological Journal. Λ Repository of Science,

Cornbe's liectures on Phrenology. By George Combe. With
 301 pp . Ihustrated. Muslin. \$1.25.

Constitution of Man, Considered in Relation to External

Constitution of Man. By George Combe. Abridged and Adapted to the Cise of schonan. With पueations. To which is anded an Appembliz leaseriptive of the Five l'rmequal kaces of 1 lin. l2ano. 120 pp. Pinper, 30 cte.

 turn grnvi.-l journal of talucutiou, Albany, \mathbf{N}. \mathbf{Y}.

Defence of Phrenology. Containing an Essay on the Nature

Domestic Life, Thoughts on. Its Concord and Discord. Hy N. sizer. 12mo. 49 pp . I'rice, 15 cis.
Education Completc. Embracing Physiology, Auimal and

 milnd, aud inprove hus eheracter.
Education: Its Elementary Principles, founded on the $\mathrm{Na}-$

 02 cis. ; Musim, sicits.

 ern! farr nta' Comgnion.
Love and Parentage; Λ pplied to the Improvement of Off-

Love, Parentage, and Amativeness. One Vol. Muslin, 75 cts.

Mental Science, Lectures on ; According to the Philosophy

Moral and Intellestual Seience; Applicd to the Elevation of

Marriage: Its History and Philosophy. With a Phrenologi-

 cal un! Ithysiologiral Expoxition of the Functions und Gualitirations for happy Martinges.

Memory and Intellectual Improvement; Applied to Self-

 Fila lation and Juvenile Instruction. By O. B. Fowlir. Twentieth Fidition. Fininrged nad

 culut-1 to prominte, and we cardindly reconumend It to all.-(Dumorratic Reviow.
Matrimony ; or, Phrenology and Physiology Applicd to the
1 : Selection of Congenini Companionn for lite ; including Dirocliann to the siarriad far laving I together Athechomately and liappily. Hy U. S. Fuwier. Octavo. 108 pi. thymp, 30 cts.

Phrenology Proved, Illustrated, and Applied; Accompanied

 Luow lodpe of Herenolagical Scleuce.-IN. Y, Reviow.

Phrenological Almanac. Published Annually. Containing

Popular Phromology; Exhibiting the Phrenological Ad-

 pl:

Phrenological Bust; Designed Especially for Learners,

Phrenology and the Scriptures; Showing their Harmolyy. Ity kev. duhn limeront. 12 now . 4t pp. I'nper, 12 cts .

Phrenol, gical Guide. Designed for Students of their own

Phrenology and Physiology; Λ Synopsis, Comprising a Con-

 menta. Shall quarto. Jitustratol. By Le N. Fowter liaper, 15 cie.

Abstract

Religion, Natural and Revealed; or, the Natural Theology

Self-Culture, and Perfection of Character; Including the

Self-Instructor in Phrenology and Physiology. Illustrated

Symbolical II ad and Phremological Chart, in Map Form,

Temperance and 'lisht Lacing; Founded on Phrenology

Works omall, Combr, Spu\%hoim, and Others, together with
 al a very liberal duccuil by furive and Wass, 131 Nasma Etreel, New York.

Jly

Constitution of the United States, in Phonography, Correspmading stice. 1 in rons.

Declaration of
tox Frnming. 15 cts.
Phonographic Teacher: Boing an Inductive Exposition of

Phonographic Envelopes, Iarte and Small, contianing Brief

$$
\begin{aligned}
& \text { Phonographic Aphabet, upon Card. Price, per } 100, \$ 3.00 . \\
& \text { Phonographic. Word-Sigus, on Card. Price, per } 100, \$ 3.60 .
\end{aligned}
$$

Accidents and Emergencies: A Guide, containing directions for Trentment in Bleeding, Cuts, Benises, Sprains, Broken Bones, Dis!ocations, Rnilwny and Stenmimat Accidents, Burns and Scalis, Bites of Mad Dogs, Choiera, Injured Eyes. Chok-
 Musirated with Nunicrous Fingravings. With Alterations, Currections, and Appendiz by Dr. K. T. Trall. 121 no. 44 pir. lrice, 15 rts.
 firea hatimeliman for trealmont in anch raterb. It olboold ha In tha hande of avers body.

Buliver, Forbes and Houghton on the Water Treatment. A Compilation of l'ajminand lectures on the Subjert of ligriene and Rational ligdropathy. Gilied liy K. N Hloughion, A. M., M. D. 12mo. 390 pr. Zluslin, 81.25.

Cook Book, Hydropathic. By R. T. Trall, M. D. A Sys.

 Frmaies, ete., cte. It is Ihe Coon's Complete Guide for all who "Eat to Live." I2mo. Inper, 6il cis. ; Mustir, 87 ris.

Chillren; Their Hydropathic Management in Health and
 arel premengtion of the licalith of their affering.

Consumption; Its Prevention and Cure by the Water
Treathout. With Abeiec conecrning Hemorrhage from the Langa, Cougha, Colda, Aathme,

 the diemene of which it ircala.
Curiositics of Common Water; or, the Advantages thereof

Cholera; Its Causes, Prevention and Cure: Showing the

Confessions and Observations of a Water Patient. By Sir E. Lyiton bulwer. 12 mm .33 pr . b'rice, 16 cts.

Experience in Waier-Cure: Λ Familiar Exposition of the r'riariples and la-sults of Whinr-Treatment, in the Cate of Acute nnt Chronic Dineaors. With inn Exp'analinn of WuterC'ure Procisame, Adrice on Diel and Rrpionen, and lorticuJar bircctuons to Women in the Treatment of femiate Dincancs, Water Trentinent in Chiddbirih, ad the Discasen of Infancy. Illusirmied by Numerous desess in the Prectice of the Author. By Mra Mary 8 Gove Niehole. 12me. 109 mp Prica, 80 ets.

Errors of Physicians and Others in the Practice of the Water.
 Cure. By J. H. Kausbe. Trantiatid by IIr. C. H. Mecter. 12ino. ol pr. Irice, 30 cta.

Abstract

Hydropathic Encyelopedia: 1 Sistem of Ifydropathy and with !ani, p. liger, pre pian by Mail, in Maslon, \$:00. well asranged Epeyclopedis.-N. Y. Tribune.

Hydropathy for the People. With Plain Olservations on

IIydropathy; or, The Water-Cure. Its Irinciples, Processes,

Hygiene and Itydropathy, Three Lectures on. By R. S

Introluction to the Water-Cure. Founded in Nature, and

Midwifery, and the Diseases of Women. A Descriptive and

Milk-'Trade, in New York and Vicinity. Giving an Account

Parents' Guile for the Transmission of Desired Qualities to A eotbef raluable wort for cruthera.

Philosophy of the Water-Curc. A Development of the
 Eir filwardl.gtion Bulwer. From the second landon filition. 12 mn . 144 bp. Price, 30 efs

Pregnancy and Childbirth. Illustrated with Cascs, showing the Remarhatile Eifecte if Warer in Mitienting the Pains and Perila of the Parturient State.

Principles of Hydropathy; or, the Invalid's Guide to Health

Practice of Water-Cure. With Authenticated Evidence of

 $1+1$ гr. ${ }^{1}$ 'rice, 30 cis.

Science of Swimming. Giving a History of Swimming,

 Every buy in tha nation ehould have a eopy, and learn to awian. Illustrated wilh Fagravinga
Water-Cure Library. In Seven 12mo Volumes. Embracing:

Water-Cure in America. Over Tlurce Humbred Cases of

Water and Vegetable Diet in Consumption, Scrofula, Cancer,

Water-Cure Applied to every known Disease. A Complete

Water-Cure Manual. A Popular Work, Fmbracing Descrip-

 Ciothing. ©
 per. I'apref, tis cis. ; Musitu, 87 cis.
Water-Cure Almanac; An Annual, containing much Inpor-

Water-Cure Journal, and Herald of Reforms. Devoted to

 - Wiok P. Triluse

Cutoris an whysimlowy.

Amativeness; or, Evils and Remedies of Excessive and Per-
 Fowler. 1 Bus. 45 pr. Price 15 cts.
Combe on Infancy; or, the Physiological and Moral Manage-
 bie work for l'urents. l'ipur, G: cta.; Muslin, si cte.
Combe's Physiology. Applied to the Preservation of Ucalth,
 Kotes ami Olservatons lig o.S. Fowler. Octavo. $3 \because 0 \mathrm{pp}$. I'aper, 62 cta. ; Hualin, 87 cts .

can native- - © Chriatiun latellistener, N. X. Y.

Chronic Diseases; Especially the Nervous Diseases of Wonen. By IT. Ruscrih. Tranatated from the German hy Charles Dummig. An important work fier the Marriod of inith mexes. 12ano. 61 pu. l'njer, 30 cis.

Direstion, Physiology of. Considered with Relation to the 310 pp. linper, 30 cts.

Fond and Dict. With Observations on the Dietetic Regimen matited for bisoritered statis of the bigestive orgatis; and an necount of the liwharies of

 Lee, M. II. Vetavo. JIS Ipp. Lager, bicts. Mashin, $\$ 1.25$.

Generation, Philosophy of. Its Abuses, with their Causes,

Hereditary Descent: Its Laws and Facts Applied to Human

Maternity; or, The Bearing ard Nursing of Children. In-

Natural Iistory of Man. Showing his Three Aspects o:

Physiology, Animal and Mental. Applied to the Prescrvation and Restiration of Itenth or Hewly and Power of Mind. By o. s. Fowler. Illustrated with Engravings. 12mo. 312 pp . l'mper, 02 cls ; Jaslin, 87 cts .

Reproductive Orgaus, Hints on the. Their Diseases, Causes,

Sexnal Diseases; Their Canses, l'revention, and Cure, on

Sober and Temperate Life. The Discourses and Letters of linuis Cormurn. With a Pin raphy of the Ablher. By liaro Maroncelli. With Notea, ond

'lobacco: Its IIistory, Nature, and Effects on the Body and
 Hornce dientey, Mr. Seminge, O. s. Fowler, It. H. T. Trall, and Uihers. By Jow thew, M. I. 12mo. 110 pir. l'up.r, ito cts.

Tech: I'heir Structure, Disease, and Treatment. With

Tubaceo: Its Use and Abuse. By John Burdell. 12 no. whp. a cis. With Illusirniuens.

Tea and Coffee. Their Physical, Intellectual, and Moral

Use of Tobaces; Its Physical, Intellectuai, and Moral Effects on the Iluman siselem. By ir. William A. Alcoll 18 mos 88 pj . Paper, 15 cts .
Verctable Dict; as Sanctioned by Medical Men, and by fixpricnce in all Ages. Including a sysem of Vegetable Coonery. By lm. William A. Alcoil 12 mo .312 pp . Paper, 62 cts ; Alusitin, 87 cts.

Biolngy ; or, The Principles of the Human Mind. Deduced

Electrical Psycholory, Philosophy of. In a Course of Twelve

Elements of Animal Magnctism ; or, Process and Applica-

Fascination ; or, The Philosophy of Charming. Illustrating
 1:능. 176 pp. l'aper, 15 cts. ; Mindin, 87 cts.
Mental Alchemy. 1 Treatise on the Mind, Nervous Syo rem, Inyrhology. Mnynctism, Mesmerism, and Disedscs By B. Brown Wilian:a, i. B 12 mn 180 гp. Tjia: 62 cla.

Macrocosm and Microcosm; or, The Universe Without and
 ni' Tuths, Inti in the Wurk of sems: and the World of Soul. In Two Parte. By William

Philosophy of Mesmerism. Six Lectures. With an Introduction. By J. Bovectlods. 12 mo .82 pp . Faper, 30 cts.

I'sycholngy; or, the Science of the Soul. Considered Phy-
 I'syellacal Fxprerinuce. By Josenh lladiock, M. D. With Engravings of the Nervuns sissthin. 121 но. 112 pp . l'ite, 30 cts.
Spiritual Intercourse, Philosophy of. Being an Explanation

Supernal Theology, and Life in the Sphere. Deduced from Aleged Eppritual Manitetations. By Owen G. Warren.' Octavo. 112 py. Price, 30 cle.
 (Loshou Livavaunvenlib.

fltiscollaurons.

Botany for all Classes. Containing a Floral Dictionary, and

 In this work then antjectis prearnted in a acries of linterenting converuationa.

Chemistry, and its Applications to Physiology, Agriculture,

Delia's Doctors; or, Λ Glance Behind the Scenes. By

Esay on Wares, Disensing the Mrans now Employed for

Familiar Lessons on Astromomy; Designed for the Us: of

Future of Nations: In what Consists its Security. 1 Lec-

Mints 'Towarl Reforms: In Lectures, Addresses, and other
 4.5 M. Mis'in. 11.2.

Hopes and Helps for the Young of Both Sexes. Relating
to the Formution of Clinencter, Choice of Avocation, Itenith. Amurement, Dluaic, Conver silion, Cultivatum of Intellect, Morat sentiment, Social Afliction, Conrtship and Siartiage

Human Rights, and their Political Guaranties. Essays. By E. I'. Hurlmut. With Notes by Geo. Combe. 12inc. 240 pp . Proper, 02 cts. ; Bluslin, 87 cis

Home For All. New, Cheap, Convenient, and Superior Nonle of huilding, eminining fulf Jirretions for Constructing Gravel Walls. 12 mm . pr.

 P'aper, 81 cti ; Muslin, 87 cta. New Fdition, Rovised, with Additiona.Immortality Triumphant. The Existence of a Goil, and

 Deial.-[1thme E Chroniche.

Innovation, Entitled to a Full and Candid Hearing. By John Pallerain. 12 mo . 61 pp . 1'rice, 15 ects.

Literature and Art. By S. Margaret Fuller. Two Parts in

 of the l'emple; Bisa Batretl's l'oems ; Liveq of Haydin, Mnzart, Handel. Duch, Thetheven :

Labor; Its Ilistory and Prospects. By Robert Dale Owen.
 $76 \mathrm{pg} . \mathrm{l}^{\text {':uper, }} 30 \mathrm{ck}$.
Power of Kindness; Inculcating the Principles of Benevo-

Population, Theory of. Delluced from the General Law of

Temperance lieformation; Its llistory, from the Organiza-

 and infurumation, epicily mersed ug.- IN, Y. Mirrof.
The Student: A Family Miscellany, and Monthly School.
Reathr. Devoted to Phynical, Moral, nut Intilectian Improvement. Edited by N. A. Calkins. Monthly. Octnvo. 32 pp . 384 pp . a Year. \$1.00.

Woman: Her Education and Influence. By Mrs. ILurn
Reial. With nu Introninetion by Mrs. C. M. Kirhlnod. With Portraite of Several Mistinemainal Woinen. 12mo. 102 pp. Yaper, 60 cts. ; Muslin, 87 cts.

A List of Serials.

Fowners and Welles Publish the following Popular and Professinnal Pemmocais, alapted to all classes. They have an nggregate circulation of about One Hesmaed and Twentr-five Thousand Cories.

These widely circulated Serrats, afford an excellent opportunity for bringing before the Public with lictorial Illnstrations all subjects of interest.

Comuenications, New Boons for notice or Refiew, Anfehtisements, and Sumsciptions, ahould be adiressed to the Ponisienes, New York.

The Impostrated Pimbnologlul Journal. A Repository of Science, Laterntire, nal Genpral Intelligence ; De woted to Phrenolngy, Filurnian, Biography, Mechanism, Agricultural Conmerce, and the Notural Nriences, and to all those lrogrossive Mensurea whimh are calculated to Ruforin, Flevate, and Improve Mankind. Published Monthly in Quarto form, eonvenient for limoling, with twenty-four Pages, at One Dollar a Year.

Tite Water-Core Jotinal, and Inerald of Reforms. A Topular Work, desoted in Hydropithy, Miysiology, and the Jnus of Life and Jealih. Himalrated with Numerous Fagravings, extithiting the atructure and Anaturny of the Human Barly-with Gamiliar Inarrustion in learners. It is enpihntienlly a Journal of Heathit, designed to be a completo Family Ginide. in all cases, and in ali diarases. Terms and mine the game.

 frys.al that,

The Univendat, Jhovograrien: Devoted to the Dissemination of
 in llowngraphy. Publishod monthly, ot One Joblar a Year in adsance.

 able coane in ciencral I'rartion, Craticiatus on the Theary and l'ractice of the various op
 Reports of the Prostres nf Henth herom in all ita deperta, ete. etce, with appropriate Illustrations. Each number contitine from 150 to dhe ortavo pages at Two bollars a Year.

Time Srunent: An Illustrated Magazine, devoted to Physical Moral

[^8]A. limited epace, in these Periodicais will be devoted to Advertisements. For particulara, address

Fowtars and Wertis, Clintorn Hatl, $1: 1$ Nive:an Strest, New York.

[^0]: - If any reader can gire any information touching thle invention, it will be thanifnily rocedred.

[^1]: - For the kake of himplifying and abrevinting, mathematical signs, as gener:ally used, will lie empliyod in our calculations, namely : + ns n sign for nuldition, - the sipn for subtraction, - that for division, nod \times that for multipliantion, while $==$ signifise equal to. Our sum, then, rends thus; 24 added to 24 and 28 equals 70 feet.

[^2]: - In this, as in many like reductions of fractions nad other calculations, the remaining fractions are dropped, bccauso too ingignificant to effect the gencral result.

[^3]: - Ald 112 for the entry ndd stairs $=1,228$, which shows our eatimatos to be correct, excepting ten squaro fect.

[^4]: * The netagen homar of this wize qives 137 more aquare fect on eneh floor than aspuare house of the vame nutside measurement; or, in other morts, a sifure house to rive a nuth room on a floor must measure 1104 feet more around than the wetaron.
 Octagan, 12 feet 6 inches cach side, mensures around 100 feet, and gives on rarlifloor squaro feet its

 Square, 20×25, measures 100 fect, and gires . . " 62j
 Gain in favor of octagon of 137

[^5]: On each foor, or 411 in cellar, first, and second stories, being more than one-fiftl. As the whole height of the wall, from bottom of the foundation, is 30 feet, the amount of outaide wnll in the square, that gives 763 fect a fluor, is feet 3,315 Whilo the octagon, that gives 702 feet a floor, is . . 143,000

 Gain in favor of ootagon

[^6]: - Recent papers state the fact that wood furnishes lighting gas several times cheaper than coal, and easily made.

[^7]: * As our figure is a little more than 14 fect to the inch, while we inc asure it 2 just 14, we shall gel a little more room than is here estimated.

[^8]:

