## No. 16.] ONE SHILLING. [July, 1847.

 THE QUARTERLY CELESTIAL PHILOSOPHER; OR THE COMPLETE ARCANA$\theta F$

# ASTRO PHILOSOPHY: 

connancing wirn
GENETHLIOLOGY SIMPLIFIED,

OR THE
PHILOSOPHY OF THE DOCTRINE OF NATIVITIES.

AI.SO
THE ASTRO METEOROLOGIST.

By W. J. SIMMONITE, A.M., M.B.A., PH. MAT.

FOURTH YEAR'S I.MPRESSION.

LONDON :
SIMPKIN, MARSHALL AND CO.
Manchester, bentham, market-place; Leicester, t. COOK and J. Fowler; Leeds, broughton, 6, commercial-street; AND ALL OTHER BOOKSELLERS.
G. THORPE, PRINTER, THORNE.

Price One Shilling ; by Post 16 Postage Stamps.

EXAMPLE.
Direct the Moon to a parallel of Herschel's declination in Queen Victoria's nativity.

I find on the 28th of May, 1819, the Moon's declination is $25^{\circ} 59^{\prime}$, and on the 29 th, it is $23^{\circ} 2$, difference in 24 hours of $2^{\circ} 57^{\prime}$ : then, if the difference $2^{\circ} 57$ is equal to 24 hours, what will the difference at noon, on the 28 th, $25^{\circ} 59$, and the declination of Herschel $23^{\circ} 25^{\prime}$, which is $2033^{\prime}$, amount to? Ans. 20 hrs., 45 min . after noon of the 28 th ; at which time I find the Mon is in longitude $6 \delta, 12$ with 4053 North latitude- the R. A. answering to this longitude and latitude is 129056 .


Problem xcit.

## 147. To direct the Sun or . Moon to Zodiac Aspects (converse).

Rule.-Observe in these Directions the Planets are directed under their Pole to the Bodies or Aspects of the Sun or Moon.
N. B.- The latitude of the Planet in the place of the Aspect must be observed in the same way as the Moon's, in order to find its true R. A. and declination therein.

## EXAMPLE.

Direct the $\odot$ to the $\delta$ of $\delta^{\hat{}}$, zodiacal converse, in the Queen's nativity.
I find, by the Ephemeris, when Mars arrives at the Sun's place 2 II 6 he has $0 \circ 38^{\circ}$ South latitnde ; the declination answering to thet longitude and latitude is $19^{\circ} 59^{\prime}$, and R. A. $60^{\circ} 7^{\prime}$. I find, by the Rules before laid down, that Mars Obl. Asc., under his own pole, is $10^{\circ} 57^{\prime}$, and the tangent of his pole 9,990270

To which add tangent of decl. $19^{\circ} 59^{\circ}=9,560673$

$$
\text { Sum is sine of Asc. diff. } 2050=9,55.943
$$

> From R. A. of place of conjunction $60{ }^{\circ} \quad 7^{\prime}$
> Subtract Ascensional difference $20 \quad 50$
> Oblique Asc. of Place of o 3917
> Subtract Obl. Asc. of o under his pole 1057
> Arc of Direction $\odot \sigma^{\circ} \delta^{\circ}$ zd. con. 2820

## Problem xcili．

## 148．To direct the M．C．，the Ascendant，and the Part of Fortune to Promissors．

Rule 1．－Note the Promissor either backwards or forwards，and see when it meets with the M．C．，Asc．，or Part of Fortune．
Rule 2．－Then，for every day，add 1 year；for every two hours a month；for 30 minutes，a week；and for 4 minutes，a day ；and the sum is the arc of direction．（134）．

## EYAMPLR．

When does Mars come to the square of the M．C．？
Mars arrives at 29 degrees of $\varphi$ on June 7 th 20 h .43 m ．．
The time after birth in May is 7 days 7 h .55 m ．
$\begin{array}{llll}\text { Arc of Direction } & 15 \quad 4 \quad 38\end{array}$
These 15 days are equal to 15 years，and 4 hours are equal to two months，and 38 minutes equal to 8 days．Mars arrives on the place of Mercury in $8 \succ 15$ ，on June 20th， $1819,10 \mathrm{~h} .36 \mathrm{~m}$ ．，which is to be added to the time that has to pas from the birth to the end of May， 7 days 7 h .55 m ．，equal to 27 days 18 h .31 m ．， or，March 1st，1847，which answers to 27 yeara 9 m .1 w．

## Pnoblem xciv．

## 149．To direct the Planets ts their Periodic Aspects in the Zodiac．

Rolb，－Look at the Table for the time each Planet，by Direction， takes in forming a periodical aspect，either with its own place or any Star，accounted from Birth．

## TABLE．

| $\begin{aligned} & \dot{y} \\ & \text { 炭 } \\ & \text { 畨 } \end{aligned}$ |  | Motion per Year． | Motion per Month | Time，each Planet，by direction，takes in forming an Aspect，either with its own Place，or with any other Star，accounted from Birth． |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Yrs． | deg．m |  | $\underset{\mathrm{yr} . \mathrm{m}}{\mathrm{~S}}$ | Sextile． <br> yr．m． | Square． yr．m． | Trine． | $8$ |
| H | 84 | 70 | 0 0 | 106 | 140 | 210 | 28 | 420 |
| h | 30 | 120 |  | 3.9 | 50 | 76 | 100 | 150 |
| 24 | 12 | 300 | 230 | 16 | 20 | 30 | 40 | 60 |
| o | 19 | 190 | 135 | $2 \quad 42$ | 32 | 49 | 64 | 96 |
| $\bigcirc$ | 19 | 190 | 135 | $2{ }^{2}$ | 32 | 49 |  |  |
| \％ | 8 | 450 | $3 \quad 35$ | 10 | 1 |  |  | 40 |
| 8 | 10 | 360 |  | 13 | 1 | 2 |  | 50 |
| （E） | 4 | 3signs | $7 \quad 30$ |  | 08 | 10 | 14 | 20 |

EXAMPLE．
When does Jupiter arrive at the conjunction of Saturn？
Saturn in 28 ）46，and Jupiter in 16 焱 57 ，whews that Jupiter has $46^{\circ} 49^{\prime}$ to go before he resches the place of Saturn：and as Jupiter moves $2 \circ 30$ per month，he
will arrive at $46^{\circ} 49^{\prime}$ in 18 months 3 weeks after birth, which would be in December of 1820 ; and as Jupiter's celestial period is 12 years, he would come at Saturn in December, 1832-again, by adding 12 years more, he arrived at the body of Jupiter in December, 1844-by adding 12 years more, Jupiter will arrive at 28 ) 46 , in 1856, by celestial period-when the Queen will be very popular and much esteemed.
(T) I should rather trust to transits than to this method of calculating.

## Problem xat.

150. To direct the M. C., or the Cusp of an House, to the Cusp of any other House.
Rule.-Look in the "Table of Houses," under 10th or any other House, for the Time occupied by them, against which obsirce the hours and minutes under the "Time from Noon," then, under the same house, observe the hours and minutes; subtract the former time from this remainder converted into degrees and minutes, by Problem 4, for the Arc of Direction.

## EXAMPI.E.

Find the time between the 10 th and 12th houses.

|  | h. ${ }_{0}$ |
| :---: | :---: |
| The 12th house has $\gamma$ 2o equal | $\begin{array}{r}0 \\ 24 \\ \hline 0\end{array}$ |
| The Midheaven has 29780 equal | $20 \quad 5$ |
| Their difference is $61045^{\prime}$, or | 42 |

## PLACIDUS MEASURE OF TIME.

## Problem xevi.

## 151. To convert the Ares of Direction into Time.

Rure. -To the R. A. of Sun, at birth, add the Arc of Direction, which will be the R. A. of Sun when the aspect is complete. Find in how many days and hours after birth the Sun acquires this R. A. and allow, for each day, one year of life, aud each two hours, one month. To find this time, look in the Ephemeris for the longitude answering to this R.A., and from the day and hour when the Sun reaches this longitude, take the day and hour of birth; the difference is the number of days and hours after birth, which are to be turned into years and months, to know the age at which the direction will operate.

## EXAMPLE.

Required the time of life when the direction of $(5) 8 \mathrm{H} \mathrm{d.d.in}$ the Queen's nativity will operate.
The Right Ascension of $S_{\text {un }}$ at birth $60^{\circ} \quad 0^{\prime}$
The Arc of direction (3) opposition H d. d. 2333
R. A. of Sun when the aspect is complete $83 \quad 33$

The longitude answering to this R. A. is 24 II 5 , and the Sun arrived at this longitude at about 15 hours after noon on the 15 th of June. Then, as the birth was in the month previous, add the days in that month days 310 hours. To the day and hour when the Sun arrives $15 \quad 15$

$$
\begin{array}{rrr}
\text { Total from which } & 46 & 15 \\
\text { Take the day and hour of birth } & 23 & 16 \\
& \\
& & \\
\text { There remains } & 22 & 23
\end{array}
$$

Which, at the rate of 1 year for 1 day, and 1 month for 2 hours, is very near the age of 23 years -or 22 years, 11 months, and 2 weeks-which would fall the second week in May, of 1841. See my Method of Timeing.

## Problem cxvir.

152. To find the time of the Arc of Direction by Naibod's Measure of Time.

## EXAMPLE.

Yrs. dys. hrs. Convert 18 degrees 18 minntes into time: thus, 18 degrees give $18 \quad 96 \quad 0$ And 18 minutes give $0 \begin{array}{llll}111 & 4\end{array}$
$18207 \quad 4$

| Measure of Time for Degrees. |  |  |  |  |  |  |  | Measure of Time for Minutes. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Deg. | Yrs. Days | Deg | Yrs. | Days | Deg | Yrs. | Days | Min | Days | Hrs. | Min | Day | rs. |
| 1 | 15 | 31 | 31 | 166 | $61^{\circ}$ | 61 | 326 | 1 | 6 | 4 | 31 | 191 |  |
| 2 | 210 | 32 | 32 | 171 | 62 | 62 | 330 | 2 | 12 | 8 | 32 | 197 | 16 |
| 3 | 316 | 33 | 33 | 177 | 63 | 63 | 337 | 3 | 18 | 13 | 33 | 203 | 20 |
| 4 | 421 | 34 | 34 | 181 | 64 | 64 | 342 | 4 | 24 | 17 | 34 | 210 |  |
| 5 | $5 \quad 26$ | 35 | 35 | 186 | 65 | 65 | 347 | 5 | 30 | 21 | 35 | 216 | 4 |
| 6 | $6 \quad 32$ | 36 | 36 | 192 | 66 | 66 | 353 | 6 | 37 | 1 | 36 | 222 | 9 |
| 7 | $7 \quad 37$ | 37 | 37 | 197 | 67 | 67 | 358 | 7 | 43 | 6 | 37 | 228 | 13 |
| 8 | $8 \quad 43$ | 38 | 38 | 202 | 68 | 68 | 364 | 8 | 49 | 10 | 38 | 234 | 17 |
| 9 | $9 \quad 48$ | 39 | 39 | 208 | 69 | 70 | 4 | 9 | 55 | 14 | 39 | 240 | 21 |
| 10 | $10 \quad 53$ | 40 | 40 | 213 | 70 | 71 | 9 | 10 | 61 | 18 | 41 | $2+7$ | 2 |
| 11 | 1159 | 41 | 41 | 218 | 71 | 72 | 15 | 11 | 67 | 23 | 41 | 2.53 | 6 |
| 12 | $12 \quad 64$ | 42 | 42 | 224 | 72 | 73 | 20 | 12 | 74 | 3 | 42 | 259 | 10 |
| 13 | 1369 | 43 | 43 | 229 | 73 | 74 | 25 | 13 | 80 | 7 | 43 | 265 | 14 |
| 14 | $14 \quad 74$ | 44 | 44 | 231 | 74 | 75 | 30 | 14 | 86 | 11 | 44 | 271 | 18 |
| 15 | 1580 | 45 | 45 | 240 | 75 | 76 | 36 | 15 | 92 | 16 | 45 | 277 | 23 |
| 16 | 1685 | 46 | 46 | 245 | 76 | 77 | 41 | 16 | 98 | 20 | 46 | 284 | 3 |
| 17 | 1790 | 47 | 47 | 250 | 77 | 78 | 46 | 17 | 10.5 | 0 | $+7$ | 290 | 7 |
| 18 | 1896 | 48 | 48 | 256 | 78 | 79 | 52 | 18 | 111 | 4 | 48 | 296 | 11 |
| 19 | $\begin{array}{ll}19 & 101\end{array}$ | 49 | 49 | 261 | 79 | 81 | 57 | 19 | 117 | 9 | 49 | 302 | $1{ }^{1}$ |
| 20 | $20 \quad 106$ | 50 | 50 | 266 | 80 | 81 | 62 | 20 | 123 | 13 | $5)$ | 3.8 | 21 |
| 21 | $21 \quad 112$ | 51 | 51 | 272 | 81 | 82 | 68 | 21 | 129 | 17 | 51 | 31.5 | 0 |
| 22 | $22 \quad 117$ | 52 | 52 | 277 | 82 | 83 | 73 | 22 | 135 | 21 | 52 | 321 | 4 |
| 23 | 23122 | 53 | 53 | 28:1 | 83 | 84 | 78 | 23 | 142 | 1 | 53 | 27 | 9 |
| 24 | $24 \quad 128$ | 54 | 54 | 288 | 84 | 85 | $8+$ | 2.1 | 148 | 6 | 54 | 333 | 13 |
| 25 | 25 | 55 | 55 | 293 | 85 | 86 | 89 | 2.5 | 154 | 10 | 55 | 3339 | 17 |
| 26 | $26 \quad 138$ | 56 | 56 | 298 | 86 | 87 | 94 | 26 | 160 | 14 | 56 | 345 | 21 |
| 27 | $27 \quad 144$ | 67 | 57 | 304 | 87 | 88 | 100 | 27 | 166 | 18 | 57 | 3.52 | 2 |
| $2 \times$ | 28149 | 58 | 58 | 309 | 8 | 89 | 10.5 | 38 | 172 | 23 | 5s | 358 | 6 |
| 29 | $29 \quad 154$ | 59 | 59 | 314 | 89 | 90 | 110 | 29 | 170 | 3 | 59 | 364 | 10 |
| 30 | $30 \quad 160$ | 60 | 60 | 320 | 90 | 91 | 116 | 31 | 18.5 | 7 | 6 | 370 | 14 |

## CONTENTS OF THE ARCANA.

## Astronomical Problems (continued) .... Page 221 OF THE ASTRO-PHILOSOPHER.

Nativity of a Gentleman ..... .... 205

No. 17 will be Published on the 1st of November, 1847. 65 June 1st, an Ephemeris for 1821-Price 1s., already out.

