

## TO ADVERTISERS, SUBSCRIBERS, TO THE PUBLIC, AND TO CORRESPONDENTS.

Advertisers.-Advertisements on the Covers, on very reasonnble terms:-Ten Lines, 4s. ; Twenty Lines, 6s. ; and a whole Page, 10s.

Subscribers.-Any parties wishing to have the "Arcana" forwarded by Post, Quarterly, can be accommodated by enclosing, in a letter, past-paid, Sirteen Postage Stamps, directed to the Author, as a Quarter's Subscription, paid in advance.

Books for Review, and Letters, addressed to the Editor, 60, St. George's Square, Sheffield.

Correspondents.-All Letters must be pointed, perspicnous, and as short, but as complete as possible. Thev must reach me before the 20th of Felruary, else they cannot be inserted in the following Number.
No. 15 will be Published on the 1st of April, 1847.
1 June 1st, an Ephemeris for 1821-Price 1s.

## CONTENTS OF THE ARCANA.

Astronomical Problems (continued) .... .... Pago 192

## OF THE ASTRO-PHILOSOPHER.

| T |
| :---: |
|  |  |
|  |  |
|  |  |

## TO YOUNG STUDENTS.

Arcs of Directions worked, and the Significators of Marriage, Profession, \&c. \&ec., pointed ont. Charge, 10s.

Hiv Judged, and Published in this Work Complete, $\mathbb{E 2}$. Authors, or Astrologers, may publish their Nativities herein, for 10s.
N. B.-Persons writing to me will be expected to enclose the fee, else no answer. And those who write on their own requests will enclose a Postage Stamp.
Revolutionary figures, for one year, judged and published in the next No., for 7s. each year.

## THE NATIVITY OF QUEEN VICTORIA.

A. R. of M. C. $301^{\circ} 8^{\prime}$.

$12108^{\prime}$.

| $\left[\begin{array}{l} \dot{\Delta} \\ \stackrel{0}{0} \\ \frac{a}{a} \end{array}\right.$ | Latitude. | Declination. | $\left\lvert\, \begin{gathered} \text { Tangent } \\ \text { of } \\ \text { Declina. } \end{gathered}\right.$ | Cotang. of Declina. | A.R. | Mid. Dist. | $\begin{aligned} & \text { Its } \\ & \text { Log. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| H | 0 s | 23 s 26 | 9,636919 | 10,3631 | 26244 | 3824 | 6709 |
| $h$ | 2 s 6 | 2 s 26 | 8,62834 | 11,3717 | 35941 | 5833 | 4877 |
| 4 | 0s 39 | 16 s 24 | 9,468814 | 10,5312 | 31938 | 1830 | 9881 3769 |
| $\stackrel{\square}{\odot}$ | 1 s 10 | 5 N 51 <br> 20 N 36 | 9,01055 9,57504 | 10,9894 10,4250 | $\begin{array}{rrr}16 & 42 \\ 60 & 0\end{array}$ | 61 81 | 4690 |
| ¢ | is 56 | 8 N 28 | 9,17277 | 10,8272 | 2522 | 8414 | 3298 |
| 8 | S3 32 | 11 N 9 | 9,29468 | 10,7053 | $37 \quad 3$ | 95 55 | 2734 |
|  | 3 N 33 | 24N20 | 9,655356 | 10,3446 | 6045 | 11937 | 1775 3236 |
| $\dagger$ |  |  |  |  | 59 | 8526 | 3236 |



## Problem l.

103. To direct the M. C. to the conjunction of a Planet in mundo when above the Earth.

Rule.-The difference between the R.A. of M. C. and the Planet's R. A. with lat. is the Arc required.

Note.-This is the star's distance from the M. C. or Mid-distance. If the planet be between the 10 th and 1 st, this is a square to Asc.; if between the 7th and 10th, then it is an opposition to the Asc.

## EXAMPLE.

When will the M. C. form a conjunction of Jupiter in Victoria's nativity?
The Right Ascension of Jupiter is $319^{\circ} 38^{\prime}$
The Right Ascension of the Mid-heaven $301 \quad 8$
1830

## EXERCISES.

1. Find the conjunction of Jupiter to the Medium Coeli. Ans. $18^{\circ} 30^{\circ}$,
2. What is the arc of M. C. to the conjunction of Saturn? Ans. $58^{\circ} 33^{\prime}$.
3. What is the arc of the M. C. to the body of Mars? Ans. $75^{\circ} 34^{\circ}$.

## Problem lif.

104. To direct the M. C. to a Semisextile of any Planet above the Earth.
Rule.-Take the difference between the Planet's Meridian Distance and one-third of its semidiurnal Arc.

EXAMPLE.
Jupiter's semiarc is $68^{\circ} 18^{\prime}$, and one-third of this is $22^{\circ} 46^{\prime}$
Jupiter's Meridian Distance is to be subtracted $=18 \quad 30$

$$
\text { Are of the M. C. to semisextile of Jupiter }=4.16
$$

Note.-When the Planet falls between the 10th and 1st Houses this direction is a sextile to the Ascendant in all figures. But if the Planet is between the 7th and 10th, then it is a trine to the Asc.

## RXERCISRS.

1. How far is Saturn from the semisextile of the Midheaven? Ans. $29^{\circ} 51^{\prime}$,
2. Find Mars's semisextile to the Midheaven, Ans. $43^{\circ} 6^{\prime}$.
3. How far is the Midheaven from the semisextile of the Planet Venus?

Ans. $500^{\circ} 38^{\prime}$.

## Problem lit.

105. To direct the M. C. to a semiquintile of a Planet above the Earth.

Rule.-Take the difference between the Planet's Meridian Distance and two-fifths of the Semi-diurnal Arc for the Arc of Direction.

EXAMPLES.

1. What is the arc of the M. C. to a semiquintile of Jupiter?

Jupiter's semi-diurnal are is $68^{\circ} 18^{\prime}$ and two-fifths are $27^{\circ} 11^{\prime}$
Subtract Jupiter's Mid. dist. 1830
M. C. to the semi-quintile of Jupiter $=841$
2. What is the are of the Midheaven to the semi-quintile of Venus?

Venus's Meridian distance is $84^{\circ} 14$
Venus's semi-diurnal arc is $100^{\circ} 48^{\prime}$, and two-fifths are 4021
The M. C. to the semi-quintile is arc $=43 \quad 53$

## Problem lifi.

106. To find the are of $M . C$. to the nonagon of a Planet.

Rule.-Take the difference between the Planet's M. D. and fourninths of its semi-diurnal arc, and the remainder is the Arc of Direction.

EXAMPLE.
What is the are of the M. D. to the nomagon of Jupiter?
Jupiter's semi-diurnal are is $68^{\circ} 18^{\prime}$, and four-ninths is $2903^{\prime}$
Subtract Jupiter's Mid. dis. $18 \quad 30$
M. C. to the nomagon of Jupiter $=10 \quad 33$

These are worked the same as the foregoing Problems, only care must be taken in getting out the four-ninths of the semi-diurnal arc.

## Problem liv.

107. To direct the M. C. to the semi-quartile of a Planet.

Rule.-The Planet must be above the Earth, and the difference between half the Planet's semi-arc diurnal and its Mid. dist. is the Arc of Direction.
$\mathcal{N o t e}$.-If the Planet falls between the 10 th and 1 st houses, this arc is the semi-square of the Asc. If the Planet lies between the 10th and 7th houses, this arc is the sesquisquare to the Asc. (218).

EXAMPLE.
What is the arc of the M. C. to semisquare of Jupiter ?
Jupiter's semi-diurnal arc is $68^{\circ} 18^{\prime}$, the half is $34^{\circ} 9$
Subtract the Mid. dist. of Jupiter $18 \quad 30$
M. C. to the semisquare of Jupiter $=1539$
N. B. This is the semisquare of the Ascendant to Jupiter, as it falls between the 10 th and 1 st houses. Herschel semisquare M. C. will be the sesquisquare of Ascendant.

EXERCISES.

1. Find the are of the midheaven to the semisquare of Mars. Ans. $26^{\circ} 51^{\prime}$.
2. What is the are of the semisquare of Mercury to the Midheaven?

Ans. $43^{\circ} 53^{\prime}$.

## Problem lv.

## [108. To direct the M. C. to the sextile of a Star.

Rule.-The Star must be above the Earth, and the difference between the Star's Mid. Dist. and two-thirds of its semi-diurnal are is the Arc of Direction. (207).

Observe, Any Planet brought to the cusp of the 12 th or 8 th honses will be the M. C. to sextile of that Planet.

## EXAMPLR.

What is the arc of the M. C. to the sextile of Jupiter?

$$
\begin{array}{r}
\text { Jupiter's semiare is } 68 \quad 18^{\prime}, \text { and two-thirds }=
\end{array} \begin{aligned}
& 45^{\circ} 32^{\prime} \\
& \text { Subtract Jupiter's Meridian distance } \\
& 18 \quad 30 \\
& \hline
\end{aligned}
$$

EXERCISES.

1. Find the Midheaven to the sextile of Venus. Ans. $17^{\circ} 2^{\prime}$.
2. What is the arc of Midheaven to the sextile of Mercury ? Ans. $26^{\circ} 33^{\prime}$.

## Problem avi.

## 109. To direct the M. C. to the quintile of a Star.

Rule.-Take the difference between four-fifths of the Star's semidiurnal arc and its Mid. Dist. for the Arc of Direction.

Notr.-For this direction the Star may be below the Earth, but then it must be taken with semi-diurnal arc, and its Mid. Dist. must also be taken from the 10th house, and this can be found by subtracting its Mid. Dist. of the 4th house from 180 degrees. This must be particularly attended to.

## EXAMPLE 1.

Eor Jupiter in the Queen's Nativity above the Earth.
Jupiter's semi-durnal arc is $68^{\circ} 18^{\prime}$, and four-fifths $=54^{\circ} 39^{\prime}$
From which subtract his Mid. Dist. $18 \quad 30$
M. C. quintile of Jupiter $=36 \quad 9$

## EXAMPLE 2.

Find the quintile of the Sun.
The Sun is below the Earth, consequently his Mid. Dist. has been taken from the 4th, subtract his Mid. Dist. $6108^{\prime}$ from $180^{\circ}$ and there remain $118^{\circ} 52^{\prime}$ from the 10th house.

$$
\begin{aligned}
\text { Here Sol's Mid. Dist. from the } 10 \text { th } & =118052^{\prime} \\
\text { His semi-diurnal are } 118^{\circ} 14, \text { and four-fifths } & =9436 \\
\text { M. C. to the quintile of Sol } & =\frac{2416}{}
\end{aligned}
$$

## EXERCYSES.

1. What is the Midheaven to the quintile of Mercury? Ans. $12^{\circ} 21^{\prime}$.
2. What is the arc of the Midheaven to the quintile of the Sun? Ans. $24{ }^{\circ} 16^{\prime}$.

## Problem livit.

## 110. To direct the M. C. to the square of a Planet.

Role.-The difference between the Planet's M. D. and the whole semi-are is the Arc of Direction.
Notr.-If the Planet fall between the 10 th and 2nd eastward, this aspect is a conjunction to the Ascendant ; but if it fall between the 10 th and 6 th westward, then the are thus found is the opposition to the ascendant.

EXAMPX.E.
Find the square of M. C. to Jupiter.
Jupiter's semi-arc is $68^{\circ} 18^{\prime}$ Jupiter's M. D. is 1830
M. C. to the square of Jupiter $=4948$

EXERCISES.

1. What is the arc of the Midheaven to the square of Mercury ? Ans, $808^{\prime}$.
2. What is Herschel's arc to the square of the Midheaven? Ans. $18^{\circ} 32^{\prime}$.

## Problem lviif.

## 111. To direct the M. C. to a trecile of any Planet.

Rule.-The difference between the Star's M. D. or 10th house and six-fifths of its semi-diurnal arc for the Arc of Direction.

Note.-If the Planet fall between the 10 th and 4th westroard, this is a quintile to the Ascendant.

## EXAMPLES.

1. Taka Jupiter's for example.

Jupiter's semi-diurnat arc is $68^{\circ} 18^{\prime}$, and six-fifths $=81^{\circ} 57^{\prime}$ Subtract Jupiter's distance from M. C. $=1830$

The M. C. arc to the trecile of Jupiter $=6327$
2. What is the arc of the Midheaven to the trecile of Mercury P Ans. $28056^{\circ}$. Found as follows:
Mercury's semi-diurnal are is $104^{\circ} 3^{\prime}$ which is divided by 5) $1040^{\circ} 3^{\prime}$ add them 2048 is one-fifth.

## The amount is the six-fifths $=12451$

Take Mercury's Mid. Dist. $95 \quad 55$
Remains the are of direction $=28 \quad 56$ the M. C. trecile $\underset{\sim}{-}$.

## PROBLEM LIX.

## 112. To direct the M. C. to the trine of any Planet.

Rule.-If the Planet be above the Farth add one-third of its seminocturnal arc to its whole arc, from which subtract its M. D. and the remainder is the Arc of Direction: or, add one-third of its seminocturnal arc to the square already found, and the sum will be the Arc of Direction.

| EXAMPLES. |
| :--- |
| The whole semi-diurnal are of Herschel is <br> His semi-nocturnal arc is $123^{\circ} 4^{\prime}$, and one-third is |
| From which subtract his M. D. |
| M. C. to the trine of Herschel |


| The M. C. to the square of Herschel is | $18 \circ$ | $32^{\prime}$ |
| ---: | :--- | ---: | :--- |
| Add one-third of semi-nocturnal arc | 41 | 1 |

## If originally under the Earth.

Rule.-Take the difference between two-thirds of its semi-nocturnal arc and distance from 4th cusp, and the remainder is the arc of direction.

> EXAMPLE.

The Sun under the Earth.
Sol's Mid. Dist. from I. C. is $61^{\circ} 8^{\prime}$
His semi-nocturnal arc is $61^{\circ} 46^{\prime}$, and two-thirds $=41 \quad 11$

$$
\text { M. C. to the trine of the Sun }=1957
$$

N. B.-In the former of these two Examples Herschel is brought to the cusp of the 6th, which forms a quincunx of the ascendant, which is always the case if the Planet is posited between the 10 th and 4 th westrvard. But if between the 10 th and 4 th eastrard, the trine is a semi-sextile to the ascendant, or sextile to the 4 th house or I. C., and it is also the Planet's distance from the 2nd house.

## PROBLEM LX.

113. To direct the $M$. C. to the sesquisquare of any Planet.

Rule.-If above the Earth add one-half of the semi-nocturnal arc to the whole diurnal, from which subtract the Planet's M. D.

EXAMPLE.
Mercury's whole serxi-dummaf arc is $104^{\circ} \quad 3^{\prime}$
Semi-nocturnal arc is $75^{\circ} 57$ the one-half is $37 \quad 58$
$142 \quad 1$
Subtract Mercury's M. D. $\quad 95 \quad 55$
M. C. to the sesquisquare of Mercury $46 \quad 6$
$A$ second way.
Rure.-Add one-half of the Planet's semi-nocturnal are to the square, and the sum is the arc of direction.

EXAMPLE.
Mercury's square to M. C. is $8 \circ 7^{\prime}$
Semi-diurnal arc is $75^{\circ} 57^{\prime}$, the one-half is 3758
M. C. sesquisquare of Mercury as before $46 \quad 6$

A third way.
Rule.-If in the 2nd subtract one-sixth of the semi-nocturnal are from the trine, or if it is in the 5th add one-sixth of the semi-nocturnal are to the trine, and this is a sesquisquare to the ascendant.

EXAMPLE.
M. C. trine of Mercury is $33^{\circ} 97^{\prime}$

Mercury's semi-nocturnal arc is $75^{\circ} 57^{\prime}$ and one-sixth $=12 \quad 39$

$$
\text { M. C, sesquisquare of Mercury }=46 \quad 6
$$

Another way.
Rule.-If originally below the Earth, the difference between onehalf of its somi-nocturnal are and its M. D. is the arc of direction.

Nots.-Let this direction be found between the 7th and 4th, it will be the sesquisquare to both the M. C. and the ascendant. It is also one-half of the semi-nocturnal arc of the square of ascendant, or opposition of M. C. (Art. 219). When formed between the Ascendant and 4th, it is a semisquare to the ascendant.

## Problem xli.

114. To direct the M. C. to the liquintile of a Planet above the Earth.

Rude.-Add three-fifths of the Planet's semi-nocturnal are to its whole semi-diurnal are, from which sum subtract its M. D.

EXAMPLE.
Thus, Herschel biquintile to M. C.
The whole of his semi-diurnal are $56^{\circ} 56^{\circ}$
His semi-nochornal arc 12304 and three-fifths $=74 \quad 52$
13148
Subtract Herschel's M. D. 3824
M. C. biquintile of Herschel $93 \quad 24$

Originally belon the Earth.
Rule 1.-If between the 4 th and 7th, then add one-tentfr of the semi-nocturnal to the sesquis quare first obtained, and the sum is the arc of direction.

Rule 2.-If between the 1st and 4th subtract one-tenth of the semi-nocturnal arc from the sesquisquare, aud the remainder will be the arc of direction.

EXAMPLE.
The Sun to biquiutile of M. C. in the Queen's nativity.
$\begin{array}{r}\text { The M. C. to s-squisquare of Sol } \\ \text { Subtract one-tenth of } 61^{\circ} 46^{\prime} \\ \hline\end{array}$

## Problem lxit.

115. To direct the M. C. to the grincunx of a Planet when under. the Earth.
Rure.-Add one-third of the semi-nocturnal are to the trine first found, or two-thirds of the semi-arc to the square, and the sum will be the arc of dircction; or the difference between one-third of the semi-arc and its M. D.

Note-If the Planet fall between the 10 th and 4 th, this is a sextile to the ascendant; but if it fall between the 7th and 4th, this aspect is a trine to the ascendant.

EXAMPLE.
Sol's semi-nocturnal arc is $61^{\circ} 46^{\prime}$, and two-thirds $=41^{\circ} 11^{\prime}$
Add M. C. $\square$, or Asc. $\sigma$ of Sol 037
M. C. quineama of the Sun $=4148$

## Problem lxhif.

## 116. To direct the M. C. to the opposition of a Planet under the: Earth.

Rule.-The difference between the Planet's Right Ascension and the A. R. of the 4th house, or I. C. is the arc of direction.
Note.-This is the Star's nocturnal Mid. Dist., which is also a square to the Ascendant.

BXAMPLE.
Find the M. C. opposition of the Sun.
Right Ascension of the I. C. $=121^{\circ} 8^{\prime}$
Sol's Right Ascension is $60 \quad 0$
The M. C. 8 of $\odot$, or Asc. $\square$, or $\odot$ 's M. D. 618

## observations.

117. Whenever an aspect is measured between two planets, any other aspect may be ascertained, if it fall in the same hemisphere, by merely taking the relative proportion of the semi-arc (Ar. 218) of the planet to be directed. Thus, if we know the distance between two planets, that is, the arc of direction to the comjunction ; then one-half of the semi-arc of the planet which is directed, added to that, will give the are of direction to the semi-quartile; (219) by adding one-sixtho part of the semi-are to this we have the arc of direction to the sextile; one-third more of the semi-arc will give the square, and another third the trine: to which add one-sixth for the sesqui-quadrate, \&c.
118. To direct the Midheaven to the opposition of a star, bring it to the cusp of the 4th house; to the trine, bring it to the 2nd or 6ith house; for the quartile, to the A scendant or seventh; to the sextile, it must be brought to the cusp of the 12th or 8th : the sesqui-quadrate falls in the middle of the 2nd and 5th houses. All aspects in mundo are measured by the semiarc of the promittor, (Ar. 221).

## EXAMPLES.

We will direct the Sun to the different aspects it will form with the M. C.; if we subtract his distance from the Imum Cceli $61^{\circ} 9^{\prime}$ from his semi-arc nocturnal $61046^{\prime}$ we have his distance from the cusp of the 1st $0^{\circ} 37^{\prime}$, which is the arc of direction, M. C. $\square \odot$; as the next aspect falls above the Earth, we must use his semi-dinrnal arc, which is $118^{\circ} 14^{\prime}$, one-fifth of which is $23^{\circ} 32^{\prime}$, which add to the distance below, the first produces $24^{\circ} 16^{\prime}$ the are of direction of M. C. Q. $\odot$, add two-fifths more of the Sun's space of a house $39^{\circ} 25^{\prime}$, two-fifths of which is $15^{\circ} 46^{\prime}$ $\begin{array}{llll}\text { Add the other arc of direction } & 26 & 16\end{array}$

The are of dirction M. C. * © mundo $40 \quad 2$ Add half the space of a house $19 \quad 42$

And we have are of direction M. C.S $\square \odot$ mundo $59 \quad 44$

## TO DIRECT THE ASCENDANT IN MUNDO.

## Problem lxit.

119. To direct the $\mathcal{A}$ seendant to the conjunction of any Star.

Rule.-The Planet must be between the 4 th and 10 th eastrvaria, then the difference between its semi-arc and Meridian distance is the Arc of Direction.

## EXAMPLE.

Mercury above the Earth, his semi-diurnal are $104^{\circ} \quad 3^{\prime}$ Subtract Mercury's Mid. distance $\quad 9.5 \quad 55$

Ascendant to the conjunction of Mercury $8 \quad 8$

Observe-This is Mercury's square of the M. C.; had Mercury been in the 4th, then it would have been in opposition to the M. C.

## exprcises.

1. What is the arc of Mars to the conjunction of the Ascendant? Ans, $21^{\circ} 51^{\prime}$.
2. Bring the Sun to the cusp of the Ascendant? Ans. $0 \circ 37$.

Some Professors will undoubtedly object to Mercury, Mars, and similar positions being brought to the cusp of the Ascendant; the reason I use that method is, because I have proved it to have very porverful effect ; therefore, I unhesitatingly adopt similar directions.

## Problem lxv.

120. To direct the Ascendant to the semi-sextile of a Planet.

Rule.-When above the Earth the sextile to M. C. is the Arc of Direction; if below the Earth, the trine of M. C. to that Planet is the Arc of Direction.

Another Rule.-Bring to the cusps of the 12th and 2nd for the Arc of Direction by Problems 46 and 47.

## EXAMPLES.

Mars's semi-sextile Ascendant.
Mars's Mid. distance $75^{\circ} 34$
Mars's semi-arc is $97^{\circ} 25^{\prime}$, and two-thirds $=6457$
Ascendant to semi-sextile of Mars $\quad \overline{10 \quad 37}$

Asecndant to semi-sextile Sol.

$$
\text { Sol's Mid distance } 61^{n} 8^{\prime}
$$

Semi-nocturnal arc $610.46^{\prime}$, and two-thirds $\approx 41 \quad 11$
Ascendant to the semi-sextile of Sol $\quad 19 \quad 57$
As these directions are so simple I need not work any more; because, while working the Midheaven to aspects, most of the Arcs of Directions to the Ascendant are obtained.

## Problem lxyi.

121. To direct the Ascendant to the semi-square of any Planet, any where between the 10 th and 4 th eastrard.
Rule.-If it fall between the 10th and 1st, its semisquare is the semisquare to the M. C. If it fall between the 1 st and 4 th, the sesquisquare to the M. C. is the Are of Direction.

These need no example.

## Problem lxvif:

## 122. To direct the Ascendant to the sextile of any Planet.

Rule 1.-If above the Earth, bring the Planet to the cusp of the 11th; or, the difference between one-third of its semi-diurnal and its M. D. is the arc of direction; which is the M. D. semisextile of the star.

Rule 2.-If belon the Earth, bring it to the cusp of the 3rd house ; (96) or, the difference between one-third of its semi-nocturnal arc and its M. D. is the Are of Direction; which is the M. C. to qx. of the Planet. Or,

Rule 3.-If below the Earth, subtract one-third from its square to the Ascendant. If between the 1 st and 10 th, subtract one-third of its semi-diurnal arc from the conjunction of M. C. and the Planet, and the remainder is the Are of Direction.

> EXAMPLE.
> Mercury's conjunction of M. C. $95 \circ 55^{\prime}$ Mercury's semi-arc $104^{\circ} 3^{\prime}$, and one-third $=34 \quad 41$
> Ascendant to the sextile of Mercury $=\overline{61 \quad 14}$

## Problem lixitit.

## 123. To direct the Ascendant to the quintile of a Star.

Role.-The difference between the Planet's M. D. and one-fifth of its semi-arc, either above or below the Earth, is the Arc of Direction.

EXAMPLES.
Mars's Meridian distance is $75^{\circ} 34^{\prime}$ Mars s semi-diurnal arc $97^{\circ} 25^{\prime}$, and one-fifth is 1929

Ascendant to the quintile of Mars $\quad 56 \quad 5$
Herschel's nocturnal Mid. distance $38^{\circ} 24^{\prime}$ Herschel's semi-arc $123^{\circ} 4^{\prime}$, and one-fifth is 2457

Ascendant to quintile Herschel 1327

## Problem lxix.

124. To direct the Ascendant to the square of any Planet.

Rule.-The Planet's Meridian Distance, either above or below the Earth, is the Arc of Drection.

EXAMPLE.
Right Ascension of Midheaven $301^{\circ} 8^{\circ}$ Herschel's Meridian Distance 26244

Ascendant square Herschel 3824

## Problem lxx.

## 125. To direct the Ascendant to the trine of any Planet.

Rule.-If between 1 st and 4 th, or between 1 st and 10 th, cidd one ${ }^{-}$ third of the semi-are to the M. D.; but if between the 7th and th, or 10 th and 7 th, subtract one-third for the Arc of Direction.

## EXAMPLE.

Sol's Mid. distnnce is $610^{\circ} 8^{\prime}$
Sol's semiarc is $61^{\circ} 46^{\prime}$, and one-third of this is 2035
Ascendant to the trine of Sol is 8143 the Are.

## Problem lxxi.

126. To direct the Ascendant to the sesquisquare of any Planet.

Rule.-If the Star be originally between the 10th and 7th, or 7th and 4th, the difference between its M. D. and half of its semi-arc is the Arc of Direction.

Ascendant sesquisquare of Herschel.
Herschel's Mid. distance is ' 380 24'
Semi-arc is $56^{\circ} 56^{\prime}$, the half is $28 \quad 28$
Ascendant sesquisquare Herschel $9 \quad 56$

## Problem lxxit.

127. To direct the Ascendant to the biquintile of any Planet.

Rule.-If between the 12 th and 10 th add three-fifths of its semiare to its M. D.; from the 10th to the middle of the 8th, subtract two-thirds of its semi-are from its M. D.; if between the middle of the 8th and cusp of the 7th, add one-tenth of its semi-arc to the sesquisquare for the Are of Direction.
Rule 2.-If it fall in the 5th house, subtract one-tenth of seminocturnal are from the sesquisquare of the M. C. for the Arc of Direction.
Note.-A Planet, to form a biquintile aspect to an angle, must be further distant than the sesquiquadrate by one-tenth of its whole semi-arc.

## EXAMPLES.

What is the Ascendant to the biquintile of Jupiter?
Jupiter between the 12 th and 10 th, the three-fifths of $68^{\circ} 18^{\prime}$ his semi-arc is $41^{\circ} 0^{\prime}$, add his Mid. distance $18 \circ 30^{\prime}$, equals $590^{\circ} 30^{\prime}$, the Arc. Or, secondly,
His sesquisquare is $52^{\circ} 39^{\prime}$, then add to this one-tenth of his semi-arc which is $6^{\circ} 51^{\prime}$, the amount is $599^{\circ} 30^{\prime}$, the Arc, as before.

## Problem lxxiit.

128. To direct the Ascendant to the opposition of a Planet.

Rul.e.-The Planet must be between the 10 th and 4 th westward; then the difference between the M. D. and its semi-arc is the Arc of Direction.
N. B.-The shortest way is to find one direction to the Ascendant or M. C., and then add or subtract the portion of the Planet's semiare to find the others.
We will direct Japiter to the different aspects of the Ascendant.and M. C., and the first is the quintile to the Ascendant ; if we take Jupiter's distance past the 11 th, $4^{4} 16^{\prime}$ from two-fifths the space of his house $22^{\circ} 46^{\prime}$-two-fifths are $9^{\circ} 6^{\prime}$, remains $4^{\circ} 50^{\prime}$, the Arc of Direction Asc. Q. $\odot$.

# His Mer-distance $18 \circ 30^{\prime}$ is the Arc of Direction Asc. $\square \odot$, it <br> is also M. C. $\sigma \odot$ add to his Mer. distance $18^{\circ} 30^{\prime}$ <br> The space of Jupiter's house 2246 

We have Arc of Direction Asc. $\triangle 24$ M. 4116 Again, add half the space of a house 1123

Gives Arc of Direction Asc. sesqui- $\square \quad$ If and M. C. $\triangle 445239$ Add to this one-tenth of Jupiter's whole arc $\quad \begin{array}{lll}6 & 50\end{array}$

Gives Arc. of Direction Åc. B. Q. 4 M. 5929

## ZODIACAL ASPECTS.

TO DIRECT THE M. C. AND ASCENDANT TO ASPECTS IN THE ZODIAC.

## PROBLEM LXXIV.

129. To direct the M. C. to aspects of Planets.

Rules.-The difference between the A. R. of the aspect without latitude and the A. R. of the M. C. is the Arc of Direction.

## EXAMPLES.

1. Direct the M. C. to the $\square$ of $\odot$ zodiac.

The $\square$ of $\odot$ falls in 2 ) 6 , its R. A. is $334^{\circ} 7^{\prime}$ Subtract the R. A. of M. C. 3318

Remainder is Arc of Direction M. C. $\square \odot$ zod. 32 59]
2. The Midheaven to the sextile of Mars.

The sextile falls in 26 )( 35 , its R. A. $328050^{\prime}$ Subtract the R. A. of the Midheaven 3018

Arc of Direction of the M. C. $\% \delta$ in zod. $=1942$
M. C. $\sigma$ of 24 , the conjunction falls in 16 m 57 , its R. A. is $3199^{\circ} 26^{\prime}$, from which take $301^{\circ} 8^{\prime}$, Arc $18^{\circ} 18^{\circ}$.
M. C. * $\odot$, the sextile falls in $2 \varphi 6$, its R. A. is with $360^{\circ}$, and as the aspect and the M. C. are in different hemispheres $361^{\circ} 55^{\prime}$, take $301 \circ 8^{\prime}$, Arc of Direction is $60^{\circ} 47^{\prime}$.

## PROBLEM LXXV.

130. To direct the Ascendant to aspects in the Zodiac nithout latitude.

Rule 1.-Find the declination of the place of aspect nithout latitude by Problem 31, or by Problem 30. I prefer the Tables of Declination.

Rule 2.-Find the A. R. of that longitude without latitude by the Table of Right Ascension.

Rule 3. -To the log. tangent of the Pole of the Ascendant, or latitude of Birth, add the log. tangent of the Declination of the Aspects: the sum will be the log. sine of its Ascensional Difference.

Rule 4. -Take this Ascensional Difference from the A. R. if the declination be north, or add it thereto if the declination be south: the result is the Oblique Ascension of the Aspect under the Pole of the country.
Rule 5.-Subtract the Oblique Ascension of the aspect, and the remainder is the Arc of Direction.

## EXAMPLE.

Direct the Ascendant toh in the zodiac.
The square of Saturn falls in $28^{\circ}$ II $46^{\prime}$, the declination of which is $23^{\circ} 28^{\prime}$, and the R. A. $888^{\circ} 40^{\prime}$.

> To the log. tang. of Pole of pst $51^{\circ} 32^{\prime}=0,099913$
> Add log. tangent of Declination $23^{\circ} 28^{\prime}=9,637611$

It gives log. sine of Ascensional Difference $33^{\circ} 7^{\prime}=9,737524$
From the A. R. of the aspect $88^{\circ} 40^{\prime}$
Take the Asc. difference, the declination being North $33 \quad 7$

> | It gives the Oblique Ascension of the aspect | 55 | 33 |
| ---: | ---: | ---: |
| From this take Oblique Ascension of Ascendant | 31 | 8 |

The Arc of Direction Ascendant $\square$ Ø zodiac 2425

## eXERCISES

The Ascendant to Aspects in the Zodiac.
Trine Jupiter falls in 16 II 57 , this declination is 22 N. 52 , its A. R. $75^{\circ} 49^{\prime}$. Sextile Mars falls in I7 II 58, this declination is 22 N. 59 , its A. R. $76^{\circ} 55^{\prime}$.
Sextile Venus falls in 26 II 35, this declination is 23 N. 28 , its R. A. $86^{\circ} 15^{\prime}$. Sextile Mercury falls in 8 er 15, this declination is 23 N. 16 , its R. A. 9900 . $O_{\text {Opposition Herschel falls in } 23 ~}^{\text {I }} 20$, this declina. is 23 N. 21 , its R. A. $82^{\circ} 44^{\prime}$.
Proceed in this manner till all the aspects, as above, are gathered out, then find the tangent of all the declinations, which reserve for easy reference in the computation.

## PROBLEM LXXVI.

## 131. To direct the M. C. to parallel of declination without latitude.

Ruts I.-That place in the ecliptic must be found where the Sun acquires the declination of the Star, cither north or south, to whose parallel the M. C. is directed.

Rule 2.-Then, from this A. R. of the Sun subtract the A. R. of the M. C. for the Are of Direction.

## BOOKS PUBLISHED ON ASTROLOGY.

Published in October, Price only Sixpence,
THE BEST AND CHEAPEST

## ALMANAC FOR 1847,

May be had of my Agents, or to Order of any Bookseller, THE

# METEOROLOGIST 

AND
DAILY ACCOUNT OF THE WEATHER:
BEING THE
BEST GUIDE TO FARMERS, GARDENERS, AGRICULTURISTS, TRAVELLERS, INVALIDS, SEAFARING MEN, AND OTHERS, EVER OFFERED TO THE PUBLIC.

Predictions of Epidemic and Endemic Diseases, serving as a Guids to Health. The World's Fatr, or the Rise and Fall of Nations, and great Personages, with other remarkable Events just at hand, being a COMPLETE ALMANAC. Directions for Farmers and Gardeners; with some excellent Recipes: also an Astronomical Aspectarian, as a Guide to all observers of the Weather, calculated to instruct, and to shew by what means I make my Predictions of the Weather, $\& c .:$ Rules for judgirig the Atmospheric Fluctuations, \&c. SIMPKIN, MARSHALL and Co., LONDON.

Lately Published, Price 3s. 6d. bound, THE SCIENTIFIC AND LITERARY MESSENGER, DEVOTRD TO

Astro-Meteorology, Astronomy, Predictory Astronomy, Geology, Botany, Chemistry, and Physical Sciences.

# ASTRONOMICAL EPHEMERISES. 

Prioe One Shilling each,
From 1838 to 1847 included,

## ASTRO PHILOSOPHICAL MATTER.

May be had of W. J. SIMMONITE, for sixteen Postage Slampe, St. George's Square, Sheffield.
$00^{\circ}$ A few Copies only, remain unsold.


TO BE SOLD, Price $308 .-$
A perfect, well boumd and excellent Copy of OLD LILY, "Christion Astrology modestly Treated of, in Three Books," with a Portrait of the venerable English Astrologer. Apply to

## W. J. SIMMONITE.

TO AUTHORS, PUBLISHERS, AND PROFESSORS OF ASTROLOGY. TO BE SOLD,

## ONE HUNDRED CURIOUS NATIVITIES,

ILLUSTRATIYE OF
SHORT LIFE, ACCIDENTS, DISEASES, BLEMISHES, DEFORMITIES,

AND A LMOOST EVERY
RULE IN ASCROLOGY.
The time of Birth correctly noted by a Medical Gentleman in extensive Practice.

Letters (enclosing a stamp) directed for "M. D., at Mr. Matthew Whitfield's, Corner of Dock-Street, Hull, Yorkshire," will be attended to.

> G. Tiorpe, Printer, Thorne.

