No. 13.] ONT SEITIIENG. [October 1846.

 QUARTERLY CELESTIAL PHILOSOPHER;

 or rus COMPLETE ARCANA or
ASTRO PHILOSOPHY:

 COMMENCING WITH GENETHLIOLOGY SIMPLIFIED, OR THE> PHILOSOPHY OF THE DOCTRINE OF NATIVITIES.

A LSO

THE ASTRO METEOROLOGIST. By W. J. SIMMONITE, A.M., M.B.A., PH. MAT.

THIRD YE.AR'S I.MPRESSION.

LONDON:

simpkin, marshall and co.

Manchester, bentham, market-place ; Leicester, t. cook and J. fowler ; Leeds, broughton, 6, commercial-btreet; and all other boorsellers.
G. THORPE, PRINTER, THORNE.

Price One Shilling ; by Post 16 Postage Stamps.

TO ADVERTISERS, SUBSCRIBERS, TO THE PUBLIC, AND TO CORRESPONDENTS.

Advertisers.-Advertisements on the Covers, on very reasonable terms:-Ten Lines, 4s. ; Twenty Lines, 6s. ; and a whole Page, 10s.

Subscribers.-Any parties wishing to have the "Arcana" forwarded by Post, Quarterly, can be accommodated by enclosing, in a letter, post-paid, Sixteen Postage Stamps, directed to the Author, as a Quarter's Subscription, paid in advance.

Books for Review, and Letters, addressed to the Editor, 60, St. George's Square, Sheffield.

Correspondents.-All Letters must be pointed, perspicuous, and as short, but as complete as possible. They must reach me before the 20 th of November, else they cannot be inserted in the following Number.

No. 14 will be Published on the 1 st of January, 1847
(493 November 1st, an Ephemeris for 1821-Price 1s.

CONTENTS OF THE ARCANA.

Astronomical Problems
Table of Houses for Latitude
OF
OF THE ASTRO-PHILOSOPHER.
OF

TO YOUNG STUDENTS.

Arcs of Directions worked, and the Significators of Marriage, Profession, \&c. \&cc., pointed out. Charge, 10s.
VTre Judged, and Published in this Work Complete, \&2. Authors, or Astrologers, may publish their Nativities herein, for 10s.
N. B.-Persons writing to me will be expected to enclose the fee, else no answer. And those who write on their own requests will enclose a Postage Stamp.

Revolutionary figures, for one year, judged and published in the next No, for $7 s$, each year.

Problem xxxyi.

83. Given a Star's Right Ascension and the Right Ascension of the Midheaven to find its Meridian Distance.
Rule 1.-Take the difference between the star's R. A. and the R. A. of the M. C., but in this the star must be above the earth, and the difference is the star's meridian distance.

Rule 2.-If the star be below the earth, then the difference between the I. C. or 4th house and its Right Ascension will be the star's meridian distance.

Note.-The Right Ascension of the 4th is always found by adding 180° to the A. R. of the Midheaven or 10th house, and, if it exceed $3 \dot{\omega} 0$ degrees take that number from the sum or plus of 360 .

EXAMPLES.

1. What is Saturn's merídian distance in the Queen's horoseope?

$$
\begin{aligned}
& \text { Saturn's Right Ascension is } 359 \\
& \hline 11 \\
& \text { Right Ascension of the M. C. is } 301 \\
& 8
\end{aligned}
$$

The Meridian distance of Saturn is $=5833$ or M. C. σ F 2 。
2. What is the Sun's Right Ascension below the earth?
$\begin{array}{lrl}\text { Right Ascension of the 4th House } & 121 & 8 \\ \text { rom which subtract the R. A. of Sol } & 60 & 8\end{array}$
The Sun's Meridian distance $=61 \quad 0$ or M. C. $8 \odot$.
3. Herschel's meridian distance.

The Right Ascension of the Midheaven is 3018
The Right Ascension of Herschel with lat, 26244

$$
\text { Herschel's Meridian distance }=3834 \text { or M.C. } \delta \text { H. }
$$

4. Mars's Meridian distance.

The A. R. of Mars with the whole circle 37642
The Right Ascension of the M. C. 3018
Mars's meridian distance $=7534$ or M.C. d d.

Problem xxxvii.

84. To find a Star's Ascensional Differende under the Pole of Horoscope.
Rule.- Add the tangent of the latitude of the given place (or birth place) to the tangent of the star's declination, and the sum will be the sine of the Ascensional difference under the Pole of the country.

EXAMPLE.

1. What is the Sun's ascensional difference his declination being $20^{\circ} \mathrm{N}, 36^{\prime}$ and the latitude of London $51^{\circ} 32$?

| Tangent of Sun's declination | $20^{\circ} 36^{\prime}$ | $=9,575044$ |
| ---: | :--- | ---: | :--- |
| Add the tangent of | 51 | $32=10,099913$ |
| A scensional difference sine | 28 | $14=9,9,674957$ |

EXERCISES.
In the Queen's nativity,
2. What is the ascensional difference of Herschel ?
3. What is Saturn's ascensional difference?
4. What is Jupiter's ascensional difference?

Ans. $33^{\circ} 4$. Ans. $3^{\circ} 4^{\prime}$.
Ans. $21^{\circ} 42^{\prime}$.
re obtained
43 Now get out all the sines of their ascensional difference.

Problem xxxviif.

85. To find the Semidiurnal Arc of a Star above the Earth.

Rule.-If the star be above the Earth in North declination, add the ascensional difference to 90 degrees; but if it be South declination subtract the ascensional difference from 90 for its semiarc.

EXAMPLES.

1. What is Mars's semidiurnal are?

$$
\begin{array}{r}
\text { Set down } \\
\begin{array}{rr}
\text { Add Mars's ascensional difference Nor/h } & 0 \\
& 723 \\
\text { Sum is Mars's semidiurnal arc } & = \\
97 & 25
\end{array}
\end{array}
$$

2. What is Saturn's semidiurnal are?

Set down the degrees $90 \quad 0$
Subtract the Asc. diff. as the dec. is South 8656
Saturn's semidiurnal are $=34$

Problem xxxix.

86. To find the Semi-nocturnal Are of a Star when below the Earth.

Rune.-If in north declination subtract the ascensional difference from 90 degrees. But if in south declination add the ascensional difference to 90 for the semiarc.

Note.-Subtract the acquired arc from 180 degrees, and the remainder is the contra-semiarc.

EXAMPLES.

1. The Sun's semiarcs.

From the given degrees
Subtract the Sun's ascensional difference
Sol's semi-nocturnal arc
:---:
28
Thus found, subtract it from

Sol's semi-diurnal arc $=11814$
2. The Moon's semiares.

	0		
From the given degrees	90	0	
Subtract the Moon's ascensional difference	34	42	
	$\overline{3 n}$		
The Moon's semi-nocturnal arc	$=$	55	18
Thus found, subtract it from	180	0	

Moon's semi-diurnal are $=12442$
Now get out all the contrary semiares and their proportional logs., which reserve in the Speculum.

Problem xl.

87. To find the Semiarcs without the Ascensional Difference.

Rule.-Add the tangent of the Latitude of Birth Place to the tangent of the Star's declination, and the sum will be the cosine of the Semiarc.

Care.-If the latitude of the country be North and the declination South, the result will be the semi-diurnal arc. But if the latitude of the country be of the same name, North or South, as the declination, the sum will be the semi-nocturnal arc. The latitude will always be N . in this hemisphere.

EXAMPLE 1.

What is the semiarc of Jupiter in the latitude of London with 16 degrees 22 min . South latitude?

$$
\begin{array}{r}
\text { Tangent of } 51 \text { degrees } 32 \text { minutes }=\begin{array}{r}
10,099914 \\
\text { Tangent of declination } 16 \mathrm{deg} .22 \mathrm{~min} .
\end{array} \begin{array}{r}
9,467880 \\
\text { Cosine of this is } 68 \text { deg. } 18 \text { minutes }=9,567794
\end{array}
\end{array}
$$

The result is Jupiter's semi-diurnal are, 68 degrees 18 minutes.

EXAMPLE 2.
What is Mars's semiare in the Queen's natus?
Tangent of latitude 51 degrees $32 \min . \equiv 10,099914$
Tangent of declination 5 deg. $51 \mathrm{~min} . \equiv 9,010546$
The cosine is semi-nocturnal arc $82^{\circ} 35^{\prime}=9,110460$

Work all the semiarcs in the Queen's natus.
3. What is Herschel's semi-diurnal are?
4. What is Saturn's semi-diurnal are?
5. What is the Sun's semi-diurnal are?
6. What is Venus's semi-diurnal are ?
7. What is Mercury's semi-diurnal arc ?
8. What is the Moon's semi-diurnal are?

Ans. 56 degrees 56 minutes. Ans. 86 degrees 56 minutes.
Ans. 118 degrees 14 minutes.
Ans. 100 degrees 48 minutes.
Ans. 104 degrees 3 minutes.
Ans. 124 degrees 42 minutes.

The Part of Fortune's semiarc is always 90 degrees. The contrary arc may be seen in the speculum ; therefore we have no need to work them by way of example. For when the semiare of a planet is found that planet's contrary semiarc may be found by subtracting the semiarc already obtained from 180 degrees, and the remainder will be the semiarc required.

Problem xif.

88. To find the Logarithm of a Planet's Circle of Position.

Rule.-Add the Arithmetical Complement of the Planet's semiare (63) to the proportional Logarithm 90 (3010), and the sum is the Logarithm of Circle of Position. The Logarithm must be preserved in the speculum, for future calculations.

EXAMPLEE.

1. The circle of Position of Herschel.
$\begin{array}{cc}\text { Semiarc of Herschel is } 56^{\circ} 56^{\prime} \text { (Ar. Co.) is } & 9,5001 \\ \text { Proportional Ar. of } 90 \text { degrees is } & 0,3010\end{array}$
Logarithm of Circle of Position $=9,8011$
2. The circle of the Position of Saturn.

The semiarc of Saturn $86^{\circ} 56^{\prime}=9,6839$
Proportional arc of 90 degrees $=0,3010$
Logarithm of Saturn's circular Position $=9,9849$
3. The circle of Position of Jupiter.

The semiarc of Jupiter $68^{\circ} 18^{\prime}$ (Ar. Co.) $=9,5791$
Add the Logarithm of 90 degrees $=0,3010$
Logarithm of Jupiter's circular Position $=9,8801$
4. The circle of Position of Venus.

The semiare of Venus is $110^{\circ} 48^{\prime}$ (Ar. Co.) $=9,7481$
Add the Logarithm of 90 deg. $=0,3010$
Logarithm of the circle of Position of Venus $=0,0491$
5. The circle of Position of Meroury.

The semiarc of Mercury is $104^{\circ} 3^{\prime}$ (Ar. Co.) $=9,7620$
Add Logaritlm of 90 degrees $=0,30 \mathrm{~J} 0$
Logarithm of Mercury's circular Position $=0,0630$
6. The circle of Position of the Part of Eortune.
$\begin{aligned} \text { The semiare of Pars } 90 \text { degrees (Ar. Co.) } & =9,6990 \\ \text { Add Logarithm of what you borrowed } & =0,3010\end{aligned}$
The circle of Part of Fortune is alway this $=\overline{0,0000}$

Problem xlif.

89. To find a Planet's difference of Circle of Position or Second Meridian Distance in any Figure.

Rule.-Add together the Logarithm of the Circle of Position to the Logarithm of the Planet's Meridian Distance, and the sum will be the proportional Logarithm of the difference of the Circle of Position; or the Planet's second Meridian Distance.

EXAMPLES.

1. The difference of circle of position of Herschel.

The logarithm of circular position of Herschel is 9,8011
Meridian distance of Herschel is $38^{\circ} 24^{\prime}$ its proportional log. $=0,6709$
Difference in circular position of Herschel is $60^{\circ} 42^{\prime}=\overline{0,4720}$
2. The difference of circular position of Saturn.

The logarithm of circular position of Saturn is 9,9849 Meridian distance of Saturn $58^{\circ} 33^{\prime}$ proportional difference $=0,4877$

Difference in circle of position of Saturn is $60037^{\prime}=0,4726$
3. The difference of circular position of Jupiter.

The logarithm of circular position of Jupiter is 9,8801
Meridian distance of Jupiter $18^{\circ} 30^{\prime}$ proportional logarithm $=0,98801$
Difference in circle of position of Jupiter is $24^{\circ} 23^{\prime}=0,8682$

4. The difference of circle of position of Luna.

The logaithm of circular position of the Moon is 0,1416 Meridian distance of the Moon $119^{\circ} 37^{\prime}$ proportional logarithm $=0,1775$

$$
\text { Difference in circle of position of Luna } 86^{\circ} 20^{\prime}=0,3191
$$

5. The difference of circnlar position of Mercury.

Mercury's logarithm of circle of position is ,0630
Meridian distance of Mercury $95^{\circ} 53^{\prime}$ its proportional logarithm $=, 2734$

$$
\text { Mercury's difference of circle of position } 82^{\circ} 58^{\prime}=, 3364
$$

6. The difference of circle of position of the Part of Fortune.

The Part of Fortune's logarithm is equal to 0,0000 The logarithm of its meridian distance must be added 0,3236

The difference of circle of position of Part of Fortune is $85^{\circ} 25^{\prime}=0,3236$
7. The difference of circle of position of Mars is 69 degrees 5 minutes.
8. The difference of circle of position of Sol is 80 degrees 5 minutes.
9. The difference of the circle of position of Venus is 75 degrees 14 minutes.
90. The circle of position of all the planets between the meridian and the horizon are analogous to the circles of latitude, which are small circles of the sphere (13), having their planes parallel with the plane of the meridian. The circle of position of a planet, \&c., has a certain point where it and the pole of the planet intersect the epuator. The circle of position being obtained by Problem 41, we have only to find the difference between it and the distance of the planet itself, and we obtain the ascensional difference of the planet under its own pole, as by the 44th Problem.

Problem xliti.

91. To find a Planet's Ascensional Difference under its onn Pole.

Rule.-The difference between the Planet's Meridian Distance and the difference of its Circle of Position is the Ascensional Difference under its own Pole.

EXAMPLR.

1. What is Mars's Ascensional Difference unter his own pole, in the Queen's nativity?

$$
\text { Mars's meridian distance is } 7534
$$

Difference in circle of position $=6950$
Mars's Ascensional difference under his own pole 544

EXERCISES.

2. What is the Ascensional difference of Jupiter under his oven pole?

Ans. 5 degrees 53 minutes.
3. Required the Ascensional difference of Herschel under his ourn pole?

Ans. 22 degrees 18 minutes.
4. What is the Ascensional difference of Saturn under his oun pole?

Ans. 3 degrees 5 minutes.
5. Required the Ascensional difference of the Moon under her own pole.

Ans. 33 degrees 17 minutes.
6. What is the Ascensional difference of Mercury under his ourn pole?

Ans. 12 degrees 55 minutes.
7. Required the Ascensional difference of the Sun under his oun pole.

Ans. 28 degrees 7 minutes.
8. What is the Ascensional difference of Venus under her oven pole?

Ans. 9 degrees 0 minutes.

Problem xliv.

92. To find the Pole of any Star in any Figure.

Rule.-To the sine of the Ascensional Difference, last found, add the cotangent of its Declination, and the sum will be the tangent of its Pole.

EXAMPLE.

1. Find Mars's pole in the Queen's nativity.

$$
\begin{aligned}
& \text { Sine of Ascensional difference } 5^{\circ} 44^{\prime}=8,999560 \\
& \text { Add cotangent of Mars's dec. } 5^{\circ} 51^{\prime}=10,989454 \\
& \text { Tangent of the pole of Mars } 44^{\circ} 21^{\prime}=9,989014
\end{aligned}
$$

EXERCISEs.

2. What is the pole of Herschel in the Speculum? Ans. 41 deg. 12 minutes.
3. What is the pole of Saturn in the Queen's natus? Ans. 40 deg. 19 minutes.
4. What is the pole of Jupiter?
5. What is the pole of the Sun?
6. What is the pole of Venus?
7. What is the pole of Mercury?
8. What is the pole of the Moon?
9. What is the pole of the Part of Fortune?

Ans. 19 deg. 14 minutes. Ans. 51 degrees 16 minutes. Ans. 46 degrees 28 minates. Ans. 49 degrees 17 minutes. Ans. 50 degrees 31 minutes. Ans. 49 degrees 55 minutes.

Problem xlv.

93. To find a Planet's Ollique Ascension or Oblique Decension under its onn pole.
Rule 1.-Add the Ascensional Difference to its Right Ascension if the declination be south; but subtract the Ascensional Difference if the declination be north from the Right Ascension, and the result is the Answer.

Rule 2.-If the Star have north declination add the Ascensional Difference to the Right Ascension; and if south subtract it, the result is the oblique Decension.
N. B-Oblique Ascension is wanted when the star is between the 4th rising towards the Ascendant up to the 10th. Oblique Decension from the 10 th past the 7 th to the 4 th house.

EXAMPLES.

1. What is Mars's Oblique Ascension in the nativity of Queen Victoria?
$\begin{array}{cr}\text { Mars's Right Ascension is } & 1642 \\ \text { Ascen. Diff. as he is north } & 544\end{array}$
Subtract Mars's Ascen. Diff. as he is north 544
Mars's Oblique Ascension is 1058
2. What is Herschel's Oblique Decension in the horoscope?

$$
\begin{array}{crr}
& \text { Herschel's Right Ascension is } & 262 \\
\hline
\end{array}
$$

$$
\text { Herschel's Oblique Decension is } 24027
$$

Remark:-We have subtracted the Ascensional Difference, in both examples, from the Right Ascension; although the Declinations are one north, and the other south; but then you will perceive, according to Rule, that when the Declination is north, we take the difference for the Oblique Ascension; also the difference for Oblique Dccension when the Declination is south, et vice versa.

EXERCISES.

3. What is Sol's Oblique Ascension in the Queen's natus P Ans. 32 degs. 2 min
4. It is required to find Jupiter's Oblique Ascension. Ans. 325 degs. $31 \mathrm{~min}^{-}$
5. Required the Oblique Ascension of Venus.
6. Find the Oblique Ascension of the Moon. Ans. 16 degs. 21 min .
7. What is the Oblique Ascension of Mercury ? Ans. 24 degs. 6 min. Ans. 27 degs. 28 min .
8. Required the Oblique Ascension of Saturn. Ans. 1 deg. 45 min .
9. The Oblique Ascension of the Part of Fortune is required. Ahs. $26^{\circ} 34^{\prime}$.

Problem xlvi.

94. To bring a Star to the Cusp of any of the Celestial Houses when above the Earth.

Rule.-To bring it to the Cusp of the 1st house subtract the whole semi-diurnal arc from its Meridian Distance, or the difference between them. To the Cusp of the 12 th, the difference between its Meridian Distance and two-thirds of semiarc-if to the Cusp of the 11 th the difference between the Meridian Distance and one-third of semiarc; if to the 10th, the Meridian Distance is the arc. If to the $9 t h$, $a d d$ one-third of the semiare; if to the $8 t h$, add two-thirds; if to the 7 th, add the whole semi-diurnal arc to the Meridian Distance, and the sum will be the respective distance of each Planet required.

EXAMPLES.

1. To bring the Moon to the cusp of the 1st in the Queen's natus.

> The whole semi-diurnal arc of the Moon is 12042
> The Moon's distance from the 10 th is 11937

The Moon's distance from the cusp of the 1st above $\quad 5 \quad 5$ or M. C. \square (3).
95. On accouint of the Moon's great latitude she is actually 5 deg. 5 minutes above the Ascendant, although she appears by her geocentric longitude to be below the earth. Found by another methodtake one-third of the Moon's semi-diurnal arc, which is the space of one house. Her semiarc diurnal is 124 deg. 42 min., and one-third is 41 deg. 34 min ., subtract from this 36 deg. 29 min . distant from the cusp of the 12 th. Proof-Take two-thirds of the Moon's semiarc, 83 deg .8 min . from the Meridian distance 119 deg .37 min ., remain 36 deg. 29 minutes, ais before; so here you see she is above the earth. The Moon's square to ${ }^{\prime}$ M. C. is $5 \cdot \mathrm{deg}$. 5 min ., her sextile to M. C. is 36 deg .29 min. : her sextile to Asc. is 78 deg .3 min . or distance from the cusp of the 114h, which is a semisextile to the M C.: found -add one-third of semiarc 41 deg .34 min . to M. C. sextile Moon 36 deg . 29 min . equal 78 deg .3 min .; or subtract one-third of semiarc 41 deg. 34 min . from her Meridian distance 119 deg .37 min . leave 78 deg .3 min , as before.

2. Bring Mars to the cusp of the 11 th honse.
Mars's semi-diurnal arc is $97^{\circ} 25^{\prime}$, and one-third is
Taken from Mars's Meridian distance
Tar
25

3. Bring Saturn-to the 10 thi, which'will be his Meridian distance, or M.C. σ h.

$$
\text { The Right Ascension of Saturn is } 3590^{\circ} 41^{\prime}
$$

The Right Ascension of the 10th house, or M. C. 3018
Saturn's distance from the 10 th house, or M. C. $=5833$ or M. C. σ 万.
Note.-This aspect of Saturn is the conjunction of M. C. Saturn ; the same 58 deg .33 min . is the Asc. square Saturn - and the Mid. dist. of Saturn. All the Mundane aspects to the Ascendant and Midheaven can be obtained by this method.

Problem xlvh.

96. A Planet lelow the Earth, to bring it to the Cusp of any of the Houses.

Ruie.-If to the Cusp of the 6 th or 2nd, subtract two-thirds of its semi-nocturnal are from its Meridian distance, or take the difference if subtraction cannot be made. If to the 5th or 3rd, the difference between one-third of semiarc and Meridian distance. If to the 4th, its Meridian distance.

EXAMPLE.

> 1. Bring the Sun to the Cusp of the 2nd house.
> The Sun's Meridian distance from the I. C. is $61 \circ 8^{\prime} 8^{\prime}$
> Sol's semi-nocturnal arc is $61^{\circ} 46^{\prime}$, and two-thirds are 41

Sol's distance from the cusp of the 2nd house $=19 \quad 57$ or M. C. $\Delta \odot$.

Problem xlvili.

97. To find the Pole and Oblique Ascension or Oblique Decension of a Star in any Figure.

Rule 1.-Add the Logarithm of Circle of Position to the Log. of Meridian Distance : the sum will be the Planet's second distance (89).
Rule 2.-Add or subtract the second distance to or from the Meridian Distance as the declination may be south or north, and the sumor difference will be the oblique ascension or decension of the planet under its own Pole (93).

Rule 3.-Take the difference between the Right Ascension of the Planet and its Oblique Ascension or Oblique Decension, which is its ascensional difference under its own Pole.

Ruls 4.-For the Pole-From the sine of Ascensial Difference subtract the tangent of its declination, and the remainder is the tangent of its pole (91).

EXAMPLE.
In Queen Victoria's nativity the Moon's declination is 24023 , her semi-diurnas arc is $124^{\circ} 42^{\prime}$; her Meridian distance 119०37', and her Right Ascension $60^{\circ} 45^{\prime}$ required her Oblique Ascensiou and her Pole.

$$
\text { Add Log. of Circle of Position, which is } 0,1416
$$ To the Meridian distance of the Moon $119 \circ 37^{\prime}$ 1775

The sum is the second dist. of the © fry fom Mid. $86^{\circ} 20^{\prime}=0,3191$ asP. 89 To $86^{\circ} 20^{\prime}$ add the Right Ascension of the Meridian $=3018$

As 387°	28^{\prime} is more than the circle, we take	387
360	0	

The true Oblique Ascension of the (3) under her Pole is $=2728$
The difference between her Oblique Ascension and Right Ascension is the Ascensional Difference under her own Pole, therefore, $27^{\circ} 28^{\prime}$ from $60^{\circ} 45^{\prime}$ her A. R. will leave $33^{\circ} 17^{\prime}$.

- The sine of Ascensional Difference $33^{\circ} 17^{\prime}=9,739398$

Subtract tangent of Moon's declination $2420=9,655348$

$$
\text { Remains the tangent of Moon's Pole } 50 \quad 31=\overline{10,084050}
$$

N. B. This Problem serves for Paragraphs 89, 90, 91, 92, and 93.

Problem xlix.

98. To find the Place of the Part of Fortune.

Rule.-From the Oblique Ascension or Descension of the Moon under her own Pole, subtract the Sun's Oblique Ascension or Oblique Descension under his own Pole, and to the difference $a d d$ the Oblique Ascension of the Ascendant, and the sum will be the required distance from the Oblique Ascension or Descension of the House to which it falls the nearest.

EXAMPLE.

In the Queen's nativity find the place of the Part of Fortune.
Oblique Ascension of the Moon under her own pole is $27^{\circ} 28^{\prime}$, we must add the circle to this or subtraction cannot be made, then we have $387^{\circ} 28^{\prime}$

Subtract Sun's Oblique A scension under his pole $\quad 32 \quad 2$
$355 \quad 26$
Add Oblique Ascension of the Ascendant 318
Gives Oblique Ascension of the Part of Fortune $\quad 386 \quad 34$
Subtract the Oblique Ascension of the 12th $361 \quad 8$
Remains Part of Fortune distant from the 12th inside $25 \quad 26$ or $4^{\circ} 34^{\prime}$ from the cusp of the Ascendant answering to 1° II 57^{\prime} in the zodiac.

After finding the distance of the Part of Fortune from a House by this method, then I allow it a semiarc of 90 degrees, and it will work the direction correct, according to the true mundane distance of the Moon from the Sun.
N. B. The Part of Fortune is never moved or directed like the Planets-it is the Planets that are directed to the Part of Fortune's mundane aspects.

The Part of Fortune is always the same distance from the Ascendant, in the order of the signs, as the Sun is from the Moon; to prove this being correct, here follows the calculation-

The Oblique Ascension of the Sun $32^{\circ} 2^{\prime}$ The Oblique Ascension of the Moon 2728

The luminaries from each other 434
Again $\left\{\begin{array}{lll}\text { The Oblique Ascension of Ascendant } & 31 & 8 \\ \text { The Oblique Ascension of Part of Fortune } & 26 & 34\end{array}\right.$
Distance of Part of Fortune from the Ascendant 434
This proves our method of calculation to be correct.
If we wish to have the A. R. of the Part of Fortune, which is of no use, here is the calculation. We have found its Oblique Ascension to be 26 deg. 34 minutes. Find its Pole of Position thus -

Pole of the Ascendant $51^{\circ} 32^{\prime}$, pole of the 12 th $40^{\circ} 53^{\prime}$, difference $10^{\circ} 39^{\prime}$. Then as 30°, the space of a house, give $10^{\circ} 39^{\prime}$ what will the Part of Fortune's distance from the lst give, $4^{\circ} 34^{\prime}$. Ans. $1^{\circ} 37^{\prime}$, which taken from $51^{\circ} 32^{\prime}$ leave $49^{\circ} 55^{\prime}$, and this tangent is

The \oplus^{\prime} 's declination as the (2) $24^{\circ} 20^{\circ}=9,655348$
It gives sine of Asc. Diff. © E^{\prime} 's under pole $32^{\circ} 30^{\prime}=9,730252$
Add $32^{\circ} 30^{\prime}$ to Obl. Asc. of \odot under pole 2634
This gives the A. R. of Part of Fortune $=59 \quad 4$
Allowing it the same latitude as the Moon, it shews its place to be in the zodiac in 1° II 57 .

INFORMATION.

"These are the only data required to proceed to calculate the arcs of direction, by which not only the nature of the events which shalk befall the native may be foreseen, but also the period when they shall occur (to within a few days) may be undoubtedly ascertained." For further information see Arcana, p. 217 and 218.

A direction, or an arc of direction, is the pathway or track described in the heavens by any planet that is significator, or that assumes the dominion or government of life, or any other accident or event peculiar to the native, from the moment of birth to its meeting or forming an aspect with the anaretas or promittors, at which time the event, be it what it may, that is indicated thereby, comes to pass. For as all the heavenly bodies constantly moves in circles, their progress, whether for a long or short time, will necessarily form arches, the content or degrees of which, being accurately fonnd, and measured, are equated by the solar motion, will describe the length of time, whether it be years, months or days, which the significator will be in forming the are of direction which produces the event.
99. If the planet directed should pass the horizon in forming aspects, that is, if the arc of direction should be longer than the planet's distance from the horizon, then its other semiarc must be used for those aspects which fall beyond the horizon. Great care is to be taken to avoid errors by taking the wrong semiarc: this may be done by observing that if the aspect fall above the earth, the sEmidiurnal arc is to be taken; and if below the eath, the semi-nocturnal arc of that planet which is directed, must be taken.
100. Directions in mundo-In all cases if the secondary distance of a planet be on the same side of the cusp whence the primary was taken, when the aspect is completed, subtract the primary and secondary distance from each other, and the difference will be the are of direction. But if the primary and secondary distance be on different sides of the cusp whence the primary was taken, then adD them, and the sum will be the arc of direction.
101. Mundane parallels are formed when two planets are equidistant from the angles of a figure, and are, like all other mundane aspects, measured by the semiarcs of the planets; thus a star on the cusp of the 2nd house would be in mundane parallel to another on the cusp of the 6th, because they are both two houses distant from the 4th; a star on the cusp of the 9th is in the same parallel with another on the casp of the 11th, because they are equi-distant from the midheaven, \&c.
102. Zodiacal Aspects-if the Sun or Moon be exactly on the meridian, then it has no pole, and the arc of direction must be found by Right Ascension. If the Sun or Moon be exactly on the horizon, it will have the polar elevation of the horizon itself; which is always the latitude of the Birth place. The Ascendant, when it is directed in the zodiac, must always be directed under the pole or latitude of the place of birth.

BOOKS PUBLISHED ON ASTROLOGY.

Published in October, Price only Sixpence,
THE BEST and Cheapest

ALMANAC FOR 1847,

May be had of my Agents, or to Order of any Bookseller, THE

METEOROLOGIST
 AND

DAILY ACCOUNT OF THE WEATHER:
BEING THE
BEST GUIDE TO FARMERS, GARDENERS, AGRICULTURISTS, travellers, invalids, seafaring men, and others,
Ever of

Predictions of Epidemic and Endemic Diseases, serying as a Guide to Health. The World's Fate, or the Rise and Fall of Nations, and great Pensonages, with other remarkable Events just at hand, being a COMPLETE ALMANAC. Directions for Farmers and Gaideners; with some excellent Recipes: also an Astronomical Aspectarian, as a Guide to all observers of the Weather, calculated to instruct, and to shew by what means I make my Predictions of the Weather, \&c. : Rules for judging the Atmospheric Fluctuations, \&c. SIMPKIN, MARSHALL and Co., LONDON.

Lately Published, Price 3s. 6d. bound, THE
 SCIENTIFIC AND LITERARY MESSENGER,
 DEVOTED TO

Astro-Meteorology, Astronomy, Predictory Astronomy, Geology, Botany, Chemistry, and Physical Sciences.

ASTRONOMICAL EPHEMERISES,

Price One Shilling each, From 1836 to 1846 included.

ASTRO PHILOSOPHICAL MATTER.

May be had of W. J. SIM MONITE, for sixteen Postage Stamps,
 St. George's Square, Sheffield.

10 A few Copies only, remain unsold.

To BE SOLD, Price 30s. -

A perfect, well bound and excellent Copy of OLD LILY, - Christian Astrology modestly Treated of, in Three Books," with a Portrait of the venerable English Astrologer. Apply to W. J. SIMMONITE.

TO PUBLISHERS, ASTRO-STUDENTS, AND OTHERS, To be SOLD, in Manuscript, THE

ASTRONOMICAL READY RECKONER,

Comprising a Complete Set of Tables, by which may be found, with ease, the true Amount of any Proportional part of Latitude, Longitude, Declination, \&c., from one degree to 360 degrees.

Rule-To shew the use of the Tables.
1st. If 1 degree, or 60 minutes require 49 degrees, what will 33 minutes require? Ans. 26 degrees 57 minutes.

2nd. If 60 minutes require 327 minutes, what will 52 minutes require? Ans. 283 minutes 24 seconds.

For Particulars, apply by Letter, (pre-paid) to the Author, W. F. WII.KINSON, Astrologer,

1, Thornton Place, Great Thornton-Street, Pottery, Hnll.

[^0]
[^0]: G. Thorpe, Printer, Thorne.

