

TO ADVERTISERS, SUBSCRIBERS, TO THE PUBLIC, AND TO CORRESPONDENTS.

Advertisers.-Advertisements on the Covers, on very reasonable terms:-Ten

 Lines, 4s. ; Twenty Lines, 6s. ; and a whole Page, 10s.Subscribers.-Any parties wishing to have the "Arcana" forwarded by Post, Quarterly, can be accommodated by enclosing, in a letter, post-paid, Sixteen Pastage Stamps, directed to the Author, as a Quarter's Subscription, paid in advance.

Bonks for Review, and Letters, addressed to the Editor, 60, St. George's Square, Sheffield.

Correspondents.-All Letters must be pointed, perspicuons, and as short, but as complete as possible. They must reach me before the 20th of June, else they cannot be inserted in the following Number.

No. 11 will be Published on the 1st of July, 1846.

CONTENTS OF THE ARCANA.

TO YOUNG STUDENTS.

Ares of Directions worked, and the Significators of Marriage, Profession, \&c. \&c., pointed out. Charge, 10s.
Kar Judged, and Published in this Work Complete, E2. Authors, or Astrologers, may publish their Nativities herein, $2 s .6 d$. per page.
N. B.-Persons writing to me will be expected to enclose the fee, else no answer. And those who write on their own requests will enclose a Postage Stamp.

> WANTED-By W. J. SIMMONITE,

A Youth between 14 and 16 years of age, as an Usher; he must be a good Penman, and have a kuowledge of the Latin tongue-apply by letter to the author, No. 60, St. George's Square.

CONTENTS OF BOOK THE SECOND.

On the Doctrine of the Sphere and Astro-Mathematics Page
To project the Sphere Stereographically upon the Plane of the Meridian 147 147
Of the Sphere and its Circles 148
PROBLEMS.
PROBLEMS.
Problems

1. To find the Geocentric Longitude of the Sun or Planets at any time 152
2. Given the Sun's geocentric longitade and greatest declination to find his Right Ascension
153
153
3. To convert Time into Degrees and Minutes
154
154
4. To turn degrees and minutes of an Arc into time
156
156
5. To find the Right Ascension of the M. C. in any latitude
156
156
6. The Obliquity of the Ecliptic and the R. A. of the M. C. given to find the degree of the Ecliptic on the M.C. 157
7. To find the Oblique Ascension of the six Eastern Houses
158
158
8. Ditto ditto six Western Houses 158
9. To find the Sun's Ascensional difference of the Houses 158
10. To find the Pole of the 11th, 3rd, 5th, or 9th Houses 159
11. To find the Pole of the 12 th, 6 th, 2 nd, or 8 th Houses
12. To find the Pole of the 12 th, 6 th, 2 nd, or 8 th Houses
159
159
13. To find the sine, cosine, \&c. answering to any degrees and minutes
161
161
14. To find the Logarithmic number between 90 and 180 degrees 161
15. To find the Logarithmic number between 180 and 270 degrees
161
161
16. To find the Logarithmic number between 270 and 360 degrees 162
17. To find the log. sine, tangent, \&c. for degrees, minutes, and seconds
162
162
18. To find the Arithmetical Complement of a Logarithm
163
163
19. To find the log. sine, tangent, \&c. of an Arc less than 3 degrees 163
20. To find the degrees, minutes, and seconds, answering to any Log.
164
164
21. Ditto
22. Ditto
ditto
ditto ditto ditto 165 165
23. To perform Multiplication by Logarithms
24. To perform Multiplication by Logarithms 165 165
25. To perform Division by Logarithms
166
166
26. To work a Proportion, or the Rule of Three by Logarithms
167
167
27. To find the degree of the Ecliptic on the 11th, 12th, 1st, 2nd, and 3rd Houses in any latitude
167
167
28. To erect a figure of the Heavens by the Table of Houses 170
29. To find the Planets' places from the Ephemeris
174
174
30. To find the Planets' latitude in the Ephemeris
174
174
31. To find the Planets Declinations, \&c.
175
175
32. To find the Declinations when given at intervals 176
33. To find the Declinations by the Tables
176
176
34. To find the Declinations by Trigonometry 177
35. Given the Latitude and Longitude to find the Declination
178
178
36. To find the Planets' R. A. by Trigonometry
179
179
37. Given the Latitude, Longitude, and Declination to find the R. A. 179
38. Given the Lat., Long., and Declination, to find the R. A. by the Tables 180
39. Given a Star's R. A. to find its Meridian Distance 181
Problems
40. To find a Stars A scensional Difference under the Pole at Birth
41. To find a Stars A scensional Difference under the Pole at Birth 181 181
42. To find the Semidiurnal Arc above the Earth 182
43. To find the Seminocturnal Arc below the Earth 182
44. To find the Semiarc without the Ascensional Difference 183
45. To find the Logarithm of a Planet's Circle of Position 184
46. To find a Planet's difference of Circle of Position, \&c. 185
47. To find a Planet's Ascensional Difference under its own Pole 186
48. To find the Pole of any Star in any Figure 187
49. To find a Planet's Oblique Ascension or Descension 187
50. To bring a Star to the Cusp of any House above the Earth 188
51. To bring a Star to the Cusp of any House below the Earth 189
52. To find the Pole and Oblique Ascension, \&c. of a Star in any Figure 190 190
53. To find the place of the Part of Fortune 190
54. To direct the M. C. to a conjunction of a Planet 194
$\begin{array}{lllllll}51 . & \text { Ditto } & \text { semisextile } & \text { ditto } & . . & . . & 195 \\ 52 . & \text { Ditto } & \text { semiquintile } & \text { ditto } & . . & . . & 195\end{array}$

53.	Ditto	semiquintile	ditto	196
53.	Ditto	nonagon	ditto	10

54. Ditto semiquartile ditto 196
55. Ditto sextile ditto 197
56. Ditto quis:tile ditto .. \quad. $\quad 197$

57.	Ditto	square	ditto	.	..	198
58.	Ditto	trecile	ditto	..	.	198

59. Ditto trine ditto .. \quad.. 199
60. Ditto sesquisquare ditto 199

60.	Ditto	sesquisquare	ditto	.	..	200
61.	Ditto	biquintile	ditto	\ldots	\ldots	201
62.	Ditto	quincunx	ditto	\ldots	\ldots	2

62.	Ditto	quincunx	ditto	.	.
63.	Ditto	opposition	ditto	\ldots	..

64.	To direct the Ascendant to the conjunction of a Star	\ldots	203		
65.	Ditto	semisextile	ditto	\ldots	203
66.	Ditto	semisquare	ditto	\ldots	204
67.	Dito	sextile	ditto	\ldots	204
68.	Ditto	quintile	ditto	\ldots	204
69.	Ditto	square	dito	\ldots	205
70.	Dito	trine	ditto	\ldots	205
71.	Ditto	sesquisquare	ditto	\ldots	205
72.	Ditto	biquintile	dito	\ldots	206
73.	Ditto	opposition	dito	\ldots	206

74. To direct the M. C. to aspects in the Zodiac 207
75. To direct the Ascendant to aspects in the Zodiac without latitude 207
76. To direct the M, C. to parallel of declination without latitude 208
77. To direct the Ascendant to Parallels 209
78. To direct the Sun, Moon, and Planets to their own aspects 209
79. To direct the Planets to their own aspects secondarily 210
80. To direct the Sun and Moon in parallel mundo (direct) 210
81. To direct the Sun and Moon to mundane parallels (converse) 211
82. To direct the Sun and Moon to any aspect in mundo 212
83. Ditto ditto ditto 213
84. To direct to the Part of Fortune 214
85. To direct to the parallel of the Part of Fortune 215
86. To direct the Sun and Moon to rapt parallel 215
87. To find the place of Zodiacal Aspects 217
88. To direct the Sun to any Aspect in the Zodiac, direct 217
89. To direct the Sun and Moon to parallels in the Zodiac 219
90. To direct the Moon in the Zodiac to any aspect except a parallel 220
91. To direct the Moon to parallels of Declination 220
92. To direct the Sun and. Moon to Zodiacal Aspects 221
93. To direct the M.C., the Ascendant, and the Part of Fortune to Promissors 222
94. To direct the Planets to their Periodic Aspects in the Zodiac 222
95. To direct the M. C., or the Cusp of an Honse, to the Cusp of any other House 223
96. To convert the Arcs of Direction into Time 223
97. To find the time of the Arc of Direction by Naibod's Measure of Time 224
98. Simmonite's Naibod Measure of Time 225
99. Simmonite's Method of equating Arcs of Directions 227
100. To rectify a Nativity by Personal accidents 227

CONTENTS.
Of the Fixed Stars 228
Explanation of the Tables of the eminent Fixed Stars 229
A Table of Sixty eminent Fixed Stars 231
The Rising, Setting, and Calminating of Sixty Fixed Stars 232
The Nature and Effects of the Fixed Stars 232
Abbreviated Method of Working Nativities 233
Rectification of a Nativity 233
Sol and Mars to Aspects in mundo 236
Mars's Preliminaries 236
The Sun to the sextile of Mars direct 237
The Sun to the Aspects of Venus direct 238
Midheaven to Aspects in the World 239
Venus to Aspects of M. C. 240 240
Ascendant to Aspects in Mundo .. \quad - 240
Zodiacal Aspects 241
Simmonite's method of timing Arcs of Directions 241
Arcs of Directions in the Queen's Nativity 242
Lady's Natus 244

THE

ARCANA

OF

PRACTICAL ASTRAL PHILOSOPHY.

BOOK THE SECOND.

ON THE DOCTRINE OF THE SPHERE AND ASTROMATHEMATICS.

1. By the Doctrine of the Sphere is meant the Solution of such Problems as relate to the Heavens, or Concavity of the visible W orld: in measuring the Circles thereof, the Angles they make with each other, I shall shew in a method more concise and methodical than any other. I here combine Spherical Geometry, Spherical Trigonometry, Astronomical Problems, and the use of Logarithms, which are inseparably connected therewith.
2. A sphere, commonly called a globe, is a round body, having every point on its surface equal distance from a point within, called the centre.

3. If, on a clear night, you place yourself in a situation, in which the view of the horizon is uninterrupted, and attentively observe the
heavens, you will see the stars, as fixed in a concave spherical surface, which surface is every where bespangled wih an innumerable multitude of shining stars, which are continually changing their places.

Some stars rise above the horizon towards the east, some disappear towards the west, and others never reach the horizon, all these performing their motions, whilst their relative positions remain the same.

There are various methods of the construction of the sphere, but the most simple, and most generally employed, is the sterengraphic, in which all the circles of the sphere, are represented by straight lines or circles. Suppose a transparent globe, on whose surface is the representation of the heavens, and the eve placed in any part of that surface viewing the opposite side, the lines should then appear as is represented by this projection.
4. To project an object of the sphere in plano, is a true geometrical delineation of the circles of the sphere, or any assigued part of them upon the plane of some one great circle, as on the horizon, meridian, equinoctial, ecliptic, colours, or on the tropic, \&c., and we delineate this Stereographic Projection, which supposes the eye to be but 90 degrees distant from, and perpendicular to the plane of the projection. That plane, upon which the object is projected or delineated, is called the plane of projection, or primitive ; and the peint in which the eye is situated, is called the projecting point, or the point of sight.

To project the Sphere Stereographically upon the Plane of the Meridian.

5. The foregoing stereographic projection of the sphere is that in which a great circle is assused as the plane of the projection, and the opposite equinox as the projecting point.
Construction-With the chord of 60 degrees describe the circle $\mathrm{H}, \mathrm{z}, \mathrm{H}, \mathrm{N}$, and draw the diameter H, H, and Z, N, at right angles to each other ; then will H, H, represent the equator, and Z, N, the polar axis. Lay off from the same line of chords $23^{\circ} 28^{\prime}$ the obliquity of the ecliptic (12), setting one foot of the compass upon $\mathrm{E} \vee \circ, \mathrm{Q}$ อロ, and make n and q perpendicular thereto. From \oplus to B lay the tangent of 30 degrees, and from \oplus to \vee that of 60 degrees, through which points P and $\mathrm{P},(7)$ describe the circles $\mathrm{P} B \mathrm{P}, \mathrm{P} \mathrm{V} P$, \&c. The meridians of celestial longitude (15) $n \mathrm{~A} q$, and $n \mathrm{I} * q$, are described in a similar manner, laying the tangent of the required number of degrees, which, in the foregoing projection, are 45° and 75° from \oplus on the line $20 \oplus$ W० towardy एo.
```
H H are the Horizon, (25),
P. P. are the Poles, (7),
E. Q. are the Equator, (8),
Z. is the Zentth, (9),
N. is the Nadir, (10),
20. 79 are the Ecliptic, (II).
```

P. n. the obliquity of Ecliptic, (12),
H. P. are the elevation of the Poles, (13),
© B. the Right Ascension, (15),
© O. the Declination, (16),
P. \% the Latitude, (17),
$\oplus 0$, the Longitude, (15).

Of the Sphere and its Circles.

6. H. H. represent the equinoctial line, is a plane of the terrestrial equator, extending to the fixed stars ; and if the axis of the earth be produced in like manner, they will be the poles of the celestial equator. This is also the horizon.
7. P. P. the poles of a sphere, are the extremities of the axis ; as, P. P. are the poles of the circle P. B. P. The poles of great circles are each 90 degrees from the circminfrence of the circles. In the
figure (2) the arcs P. V. P., P. B. P., between the great circle and its pole, P., are arcs of 90 degrees.
8. E. Q. equator, a great circle which separates the northern from the southern hemisphere.
9. Z. the zenith, which is the summit of the celestial dome above us, or perpendicularly over our heads, 90 degrees from the horizon, the pole of the horizon. The prime vertical passing through 0 deg. of Aries. The sun arrives here about mid-day, or noon. This is also Medium Coeli, or Mid-heaven, that degree of the ecliptic which is upon the meridian at any time of our day; also called Upper Meridian.
10. N. the nadir, (an Arabic term) is the point of the heavens direcily under the feet of the observer, and diametrically opposite to the zenith. The sun arrives here at mid-night. This point is also called the Imum cooli, or under-heaven; being the cusp of the fourth house.
11. .8. Yo. the ecliptic. The apparent great circle in the heavens, in which the sun appears to move in the course of the year, n shews its north pole, and q its south pole. It intersects the equator into two points, called the vernal and autumnal equinoxes; because, when the sun is in these points, the days and nights are equal all over the earth. It is called the ecliptic, because all the eclipses of the luminaries must necessarily happen in this line, (22).
12. P. n. the obliquity of the ecliptic. The ecliptic and equator, being great circles, must bisect or equally divide each other; and their inclination, or difference, is called the obliquity of the ecliptic ; or the sun's greatest declination.
13. H. P. elecation of the pole or star is its height, in degrees, between the pole and the horizon, or equal to the latitude of the place at birth. or country, observatory, \&c.
14. P V P, P O P, P A L q, are meridians of terrestrial longitude which are the balves of great circles drawn round the earth through its poles and passing the latitude of any place in its meridian. Longitude, on the earth, is the distance of any place east or west of Greenwieh, according to British computation.
15. n. A. I. q. $-n$. I. *. q., sc., are meridians of celestial longitude, and is the distance of any heavenly body from first point of the zodiacal sign Aries, $0^{\circ} 0$, measured on the ecliptic. The longitude and Right Ascension are measured in this direction. In the right angled triangle \oplus. B. O., the line $\oplus . O$. is the sun's longitude, or an arc of the ecliptic, from the first point of Aries. \oplus. B. the sun's Right Ascension, or an are of the equator, from the first point of Aries, (20).
16. \oplus. O. on the ecliptic, in the right angled triangle, is the sun's declination, and the angle B. \oplus. . ., is the obliquity of the ecliptic, measured by the arc Q. e., E. 》o.
N. B. When the sun, or any other beavenly body, is in that part of the ecliptic which is Q. 20. towards the north pole, the declination is called north, and when in that part which is E. \mathcal{Y}°. towards the south pole, the declination is south.
17. P. *. represent the circle of latitude, n. A. the complement of the star's latitude, I. A. when the star is on the north side of the ecliptic, it is called north latitude; but if on the southern side, then it is called south latitude. P. A. the complement of the star's declination B. A.
18. The angle P. n. A., the complement of the star's longitude. Th supplement of the angle n. P. A., measured by the arc V. Q., equals the complement of the star's right ascension. (151)

All spheres are divided into two, great and small circles.
19. A great circle of a sphere is a circle drawn upon its surface, whose plane passes through the \oplus centre of the sphere; as, P B P., Z O N, are great circles. Fivery section of a sphere is a circle. A small circle of a sphere is a circle drawn upon its surface, whose plane does not cut the centre of the sphere. Two great circles of the sphere crossing each other, into two equal parts or semicircles; as, both the great circles $\mathrm{P} \oplus \mathrm{P}, \mathrm{Z} \mathrm{O} \mathrm{N}$, divide each other into two equal parts or semicircles.
20. A great circle passing through the sun and the poles, will intersect the equator in a point which represents the place of the sun referred to the equator. The arc of the equator intercepted between this point and the vernal equinox, is called the sun's right ascension (15). The are of the ecliptic intercepted between the sun and the same equinox, is denominated the sun's longitude. And the are of the great circle intercepted between the sun and its place referred to the equator, is called the sun's declination.
21. The tropics are two small circles, parallel to the equator, at 23 degrees 28 minutes distance from the equator; that to the north is called the tropic of Cancer, and where the sun reaches in declination about the longest day; and that to the south, the tropic of Capricorn, where the sun arrives about the shortest day.
22. Solstitial points are the first point of e0, and the first point of ψ°, being the most extreme north and south points in the ecliptic. At these points, the sun seems to stand still, or be at the same height in the heavens, at noon, for several days together (11). The extent of the obliquity of ecliptic.
23. The axis is the diameter about which it rotates, which does not shift its position, while the other parts describe circles around it.
24. Azimuth, or vertical circles, are great circles of the sphere passing through the zenith and nadir, and are perdendicular to the horizon. Let a person stand at \oplus, and let H. H. be his horizon, then the circle Z. O. N. is a vertical or azimuth circle. Azimuth of any celestial object is an arc of the horizon, contained between the east and west point of the heavens, and a vertical circle passing through the centre of that object. (2).

25 . The horizon, is a great circle (19) perpendicular to the vertical, or 90 degrees distant from the nadir and zenith, thus dividing the world into two equal parts, or hemispheres : it is the diameter of the sphere, as H H. The eastern, or left hand H, is the ascendant, or 1st house; the western H is the descendant, or 7 th house, $(9 \& 10)$.

THE CIRCLE, AND TRIGUNOMETRICAL LINES.

26. A circle is a plane figure, bounded by one line, called the circumference, every point of which is equally distant from a certain point within the figure, called its centre.

In the figure, C is the centre, E D A I is the circumference, which is sometimes called the periphery.
27. The diameter of a circle is a line drawn through the centre, and terminated at both ends by the circumference; as, AE is a diameter.
28. Every diameter is double the radius, and divides the circle into two equal parts. The terminating points of the diameter are sometimes called its poles ; as, D and I.
29. The radius of a circle is a line drawn from the centre C to the circumference; as, C A : also E C and D C are called radii.
30. A semicircle is a segment cut off by the diameter, or half the area of the circle, and contains 180 degrees; as, ID A.
31. A chord of a circle is a straight line joining the two extremities of an are ; as, B G L , thus cutting the circle into two unequal parts.
32. A quadrant is the half of a semicircle, or quarter of the whole circle, consisting of 90 degrees; as, E D C.
33. All circles, great or small, are divided into 360 equal parts, called degrees; each degree into 60 minutes; each minute into 60 seconds, and so on. The degrees may be great or small, according to the size of the circle.
34. An arc of a circle is any part of the circumference.
35. A segment of a circle is the arc cut off by a straight line; as, B A L is a segment.
36. A tangent to a circle is a straight line, which touches the circle, and, on being continued, does not cut it ; as, A F is a tangent.
37. The sine B G of an arc A B, is a straight line drawn from B, one of its extremities, perpendicular to the diameter A E, which passes through the other.
38. The versine A G of an arc A B is that portion of the diameter A E upon which the sine is perpendicularly intercepted between the sine and the arc.
39. The secunt $\mathrm{C} F$ of an are $\mathrm{A} B$ is a straight line drawn from C, the centre, to F the farthest extremity of the tangent.
40. The sine, versine, taugent, and secant, of an arc A B, are called the sine, versine, tangent, and secant, of the angle ACB, measured by the arc, to the radius A C .
41. The complement of an arc A B, or angle A B C, is what it wants of a quadrant, or aspect of 90 degrees. Thus, B D, or B C D, is the complement of A B , or A C B.
42. The supplement of an are A B, or of an angle A C B, is what it wants of a semicircle, or 180 degrees. Thus, B E, or A M, is the supplement of A B, and B C D, or A C M the supplement of A C B.
43. The explement of an arc A B, or of an angle A C B, is what it wants of the whole circumference, or of four right angles. Thus, B D E M L A is the explement of A B, or of A C B.

An arc. or angle, and its supplement, have the same sine, tangent, and secant, for B G is the sine of BE, or B C E, A F the tangent of A M, or A C M, and C F the secant of A M, or A M C. B C E the supplement to two right angles. The radius is equal to the sine, or versine of 90 degrees, and to the tangent, or cotangent of 45 degrees.

Observation.

I have considered it would be better and more expeditious to commence calculations with a perspicuous Elementary Series of Practical Problems in Genethliological Mathematics, easy to be understood even by the merest tyro in Arithmetic: after which I intend entering more minutely into the Mathematical Treatises of Spherical Geometry, Spherical Trigonometry, and Astronomical Problems, illustrating by diagrams, the Anatomy of the Sphere. By these means the philosophy of Aspects, and the natural divisions of the Heavens will be fully demonstrated.

> Instructions in erecting an Horoscope of the Heavens, for any latitude, at any moment of time.

Problem i.

44. To find the Geocentric Longitude of the Sun or planets, at any given moment of time.

- Rule 1st. Find the amount of Longitude in the Zodiac traversed by each planet, or other heavenly bodies, between the noon preceding and that which follows the given time or moment at birth. 2nd. Then say, if 24 hours give that amount, what will that time for which the figure is intended, from the preceding noon give? 3rd. Add the result to the planet's longitude at the preceding noon, and the amount is its true place.

Noth. If the planet be retrograde, then subtract the result from the planet's place from the preceding noon.

BOOKS PUBLISHED ON ASTROLOGY.

Published in November, Price only Sixpence, THE BEST AND CHEAPEST

ALMANAC FOR 1846,

May be had of my Agents, or to Order of any Bookseller, THE

METEOROLOGIST

and

DAILY ACCOUNT OF THE WEATHER:

BEING THE

BEST GUIDE TO FARMERS, GARDENERS, AGRICULTURISTS, TRAVELLERS, INVALIDS, SEAFARING MEN, AND OTHERS,

```
EVER OFFERED TO THE PUBLIC.
```

Predictions of Epidemic and Endemic Diseases, serving as a Guide to Health. The World's Fate, or the Rise and Fall of Nations, and great Personages, with other remarkable Events just at hand, being a COMPLETE ALMANAC. Directions for Farmens and Gardeners; with some excellent Recipes, a list of the Principal Fairs of England: also an Astronomical Aspectarian, as a Guide to all observers of the Weather, calculated to mstruct, and to shew by what means I make my Predictions of the Weather, \&c. : Rules for judging the Atmospheric Fluctuations, \&c.

SIMPKIN, MARSHALL and Co., LONDON.

Lately Published, Price 3s. 6d. bound, THE

SCIENTIFIC AND LITERARY MESSENGER, DEVOTED TO

Astro-Meteorology, Astronomy, Predictory Astronomy, Geology, Botany, Chemistry, and Physical Sciences.

ASTRONOMICAL EPHEMERISES,

Price One Shilling each,
For the years 1841-1842-1843-1844-and 1845, containing

ASTRO PHILOSOPHICAL MATTER.

SIMPKIN, MARSHALL \& Co., LONDON :
Or may be had of W. J. SIMMONITE, for sixteen Pastage Stamps, 60, St. George's Square, Sheffield.

all do il zun Tó BE SOLD, Price 30s.-

A perfect, well bound and excellent Copy of OLD LILY, - Christian Astrology modestly Treated of, in Three Books," with a Portrait of the venerable English Astrologer. Apply to W. J. SIMMONITE.

TO THE
 ASTRO PHILOSOPHER \& METEOROLOGIST, No. 11 will contain, MOST COMPLETE AN
 ASTRONOMICAL EPHEMERIS

For July, August, September, October, and November, 1846.

The daily places at Noon of Herschel, Saturn, Jupiter, Mars, Sun, Venus, Mercury, and the Moon, together with the Asteroids, Vesta, Juno, Pallas, and Ceres, for every fourth day ; also, the Right Ascension of the Meridian for every day at noon-the latitudes of all the Planets for every seven days, except that of the Moon, which will be given every noon. The declinations of the Planets every four days, except the Moon, which will be given daily, with the

ASTRONOMICAL ASPECTARIAN,

AND THE

MINUTE OF THE OCCURRENCE OF EACH ASPECT THROUGHOUT THE ABOVE MONTHS,
This will be followed with 8 pages of Tables in each Number of the Arcana till the Ephemeris for 1846 be completed; then 8 pages, in each No., of Astronomical Tables of the Planets' Places, from 1820 to 1840.

* No additional charge will be made.
G. Thorpe, Printer, Thorne.

