THE

fftonthly Corresponoent,

\&c. \&c.

No. III.	MARCH 1, 1814.	Vol. I.

ASTRONOMICAL OBSERVATIONS FOR MARCH.

Excepting the rotation of the Earth upon its axis, there is ${ }_{2}$ as far as we know, no other body in nature, with which we are acquainted, whose motion is perfectly uniform and regular. The apparent motion of the Sun is very unequal, end therefore equal or true time, which flows on for ever in the same manner, cannot be truly measured by the Sun's apparent motion. Equal and true time is that which is shown by a well-regulated time-keeper, as a clock or watch; and in order that the apparent time, shewn by the sun-dial, may be made to agree with this, it must be corrected by proper equations, such as we have given in each of our astronomical portions, and an account of which we shall now endeavour to explain.

The difference between mean and apparent time depends chiefly on two causes, viz. 1. The obliquity of the ecliptic with respect to the equator; and, 2. The unequal motion of the Earth in its elliptical orbit. Since the Earth's axis is perpendicular to the plane of the equator, any equal
 portions of the equator will, by means of the Earth's rotation upon its axis, pass over the meridian in equal times; and so, of course, would any equal portions of the ecliptic, provided it were parallel to, or coincident with, the equator. But as this is not the case, the daily motion of the Earth upon its axis will carry unequal portions of the ecliptic over
the meridian in equal times, the difference being always in proportion to the obliquity : and, as some parts of the ecliptic are much more obliquely situated, with respect to the equator, than others; these differences will, therefore, be unequal among themselves. If, for instance, two bodies, the Sun and a star, were to set out together from one of the equinoctial points, and to move through equal spaces in equal times, the Sun in the ecliptic, and the star in the equator; then the star moving in the equator would always return to the meridian exactly at the end of every twenty-four hours, as measured by a well-regulated clock; but the Sun moving in the ecliptic would come to the meridian sometimes sooner than the star, and sometimes not so soon, according to their relative situations; and they would never be found upon that circle exactly together, but on four days in the year, viz. on or about the 20th March and the 23d of September, when the Sun enters the equinoctial points; and on the 21 st of June and the 21 st of December, when that body is in the solstitial points.

This is easily shown on the globe, by making marks of chalk, or placing patches of black court-plaster, at equal distances, all round the glabe, say 10 degrees, from each other; beginning from the first of Aries, which answers to the 20th of March. Now, by turning the globe on its axis, it will be seen that all the patches in the first quadrant of the ecliptic, that is, from Aries to Cancer, come sooner to the brazen meridian than their corresponding marks on the equator. Hence, apparent time marked by the dial would be before equal or true time, and we should have to subtract to obtain the true equation. In the sécond quadrant, from Cancer to Libra, the patches in the ecliptic would come to the meridian later than those on the equator, and apparent time would be later than equal time, and we should have to add. In the other quadrants, the circumstances would be the same,
that is, from Libra to Capricorn, the Sun would be soonest, and from Capricorn to Aries, it would be latest.

If, however, the reader refers to the tables of equation of time, in each month, they will be found not to answer exactly to this : the apparent motion of the Sun, or apparent time, does not begin to get before time by the clock till about the 16 th of April, instead of the 20 th of March ; and a similar change occurs about the lst of September, instead of the 23d; and the times when the clock begins to surpass the Sun, are about the 16th of June and the 25th of December, instead of the 21st of June and the 21st of December. This is owing to the elliptical form of the Earth's orbit. If this orbit were circular, then the whole difference between equal time, as shown by the clock, and apparent, as shown by the dial, would arise entirely from the inclination of the Earths axis; and the change from slow to fast, and fast to slow, would be, as we first mentioned, on the 20th of March, the 21 st of June, the 23 d of September, and the 21st of December.

This, however, is not the case; for the Earth travels when it is nearest the Sun, that is, in winter, more than a degree in twenty-four hours; and when it is farthest from the Sun, that is, in summer, less than a degree in the same time ; consequently, from this cause, if it were to act alone, the natural day would be of the greatest length when the Earth was nearest the Sun; for it must continue turning the longest time after an entire rotation, in order to bring the meridian of any place to the Sun again, and the shortest day would be when the Earth moves the slowest in her orbit. Now these inequalities, combined with those arising from the inclination of the Earth's axis to the ecliptic, or orbit of the Earth, make up that difference which is shown by the equation table. In other words, the obliquity of the Earth's. prbit to the equator on the Earth, which is the first-mentioned cause of difference between equal and apparent time, would
make the clock and dial agree when the Earth enters Libra, Capricorn, Aries, and Cancer; but the unequal motion of the Earth, in its orbit, would make them agree twice a year, when the Earth is in its aphelion and perihelion ; and, consequently, when these two points fall in the beginning of Cancer and Capricorn, or of Aries and Libra, they will concur in making the Sun and clocks agree. But the aphelion is somewhere in the ninth degree of Cancer, and the perihelion in the ninth degree of Capricorn; and therefore the Sun and clocks cannot be equal about the beginning of those signs, nor at any time in the year, except when the swiftness or slowness of equation, resulting from one of these causes, just balances the slowness or swiftness arising from the other.

The times of Sun-rising and setting for the 1st, 11th, and 21st, will be found as follows, viz :-

1st. Sun rises 35 m . past 6. Sun sets 25 m . past 5 .
11th. - - 15m. - 6. - - 45m. - 5 .
21st. - - 55m. - 5. - - 5m. - 6.

Equation of Time.-[See the month of January.]
The following table will show what is to be added to the apparent time shown on the dial, to obtain equal or true time for every 5th day of March.-

The Georgian planet will be stationary on the 6th. The Sun enters the sign Aries, 37 m . after 5 in the morning of the 21st. The planet Mercury will be found stationary on the 23d.

The Moon will be at the full, at 15 m . past 7 in the morning of the 6th, it enters the last quarter at half-past 1 in the morning of the 14 th. The succeeding new Moon or change will happen at 6 m . past 9 in the evening of the 21 st , and this enters its first quarter at 21 m . past 5 in the afternoon of the 28th.

The times of the Moon's rising from the first five days after she is in the full, will be as follow, viz. on the 7 th of March, 5 m . past 7 in the afternoon.
8th - - 19 - 8 ditto.
9th - - 31 - 9 ditto.
10th - - 39 - 10 ditto.
11th - - 46 - 11 ditto.
On the 1st day of March, the Moon will eclipse the star marked ξ II.

The immersion will occur at 32 m . past 7 in the evening, when the star will.be $5^{\prime \frac{1}{3}}$ north of the Moon's centre : the emersion happens 43 m . past 8 , being at that time 3 m . north of the Moon's centre. .

Mercury's greatest elongation from the Sun happens on the 16 th.

In the eclipses of the first satellite of Jupiter, that will be visible in London this month, the emersions at the following times, viz. on the 7 th day at 29 m . past 1 in the morning.

8th	-	57		7	-	evening.
14th		23	-	3	-	morning
15th	-	51	-	9	-	evening.
22d	-	45	-	11	-	
29th	-	40	-	1		morning
lst	-	8		8		evenin

ACCOUNT OF THE COMET IN 1807.

This Comet which appeared in our hemisphere in the last three months of the year 1807, and until the 21st of February 1808, was seen by Dr. Herschel, who had very frequently observed it from the 4th of October to the latter period; but it is deficient in the usual eiements of calculation, which have not yet been made public, and our limited time will not permit us to procure them soon enough for our publication. But in other respects the information we have to communicate to our readers will not be the less gratifying, from the particulars we are enabled to present to their notice. It was first observed by Mr. Pigott, of Bath, on the 28th of September, 1807, who communicated the intelligence to Dr. Herschel, in consequence of which, the first opportunity that presented of seeing it was on the evening of October the 4th; but the doctor does sot profess to state its motion and velocity, and our own observations upon it having been under great disadvantage, do not authorize us to draw conclusions sufficiently speeific for elementary purposes. On that night, however, the doctor observed the nucleus of the Comet to be perfectly round, as he also did afterwards on the 18th and 19th; it did not amount to $2^{\prime \prime} .47^{\prime \prime \prime}$ and was certainly less than the diameter of Jupiter's third satellite, with which he repeatedly compared it; and on the 20th of November it was only a mere point with a seven feet reflector, having a power of 75 only. The head of the Ccmet on the 19th of October appeared as large as Jupiter, bus had become less brilliant on the 20th of November. The coma. on the former of the last-mentioned days was about six minutes in diameter, and on the 6th of December about $4^{\prime \prime} 54^{\prime \prime \prime}$, with a mirror of 24 inches diameter. The tail on the 18th of October extended over a space of $3^{\circ} 45^{\prime}$; which was lessened to $2^{\circ} 30^{\prime}$ on the $20 t h$ of November, but had diminished to 23 minutes of a degree in
length on the 6th of December, and on the 2d of February the tail was in a vanishing state, and it was observed on the 26th and 28th of October, that this, was longest on the south preceding side, where it was well defined, except towards the extremity.

At the time of the observation on the 19th of October, its distance from the ascending node was $73^{\circ} 45^{\prime} 44^{\prime \prime}$, at which the distance from the earth was $1,169,192$ or 111 millions of miles, and about a quarter when it subtended an angle of one second; and if the Earth's diameter (according to Mr. Dalby, see Philos. Trans. for 1791, p. 239) be 79,132 miles, and at this distance must subtend an angle of $17^{\prime \prime} .2$, from these data the diameter of the Comet will be found to be no more than 538 miles, which is much less than has generally been imagined. But on the 2d of February, 1803, its distance from the earth was not less than 240 millions of miles. On Dr. Herschel's first sight of the Comet, on the 4th October, 1807, it had the appearance of a gibbous moon, the enlightened part of which was observed to be $119^{\circ} 45^{\prime} 9^{\prime \prime}$, or nearly two-thirds of the diameter, which had extended on the 19 th to $124^{\circ} 22^{\prime} 40^{\prime}$, being more than 4 degrees, exceeding two thirds : but he nevertheless concludes, from its continual brilliance, similar to the fixed stars, when it was more remote, that it certainly possessed some self-luminous properties, besides what it could possibly have by reflection from the Sun. He calculated also that on the 9th of October the tail expanded over a space, considering its distance from the earth at that time, equal to $9,160,542$ miles.

As the Moon is the fountain of radical moisture and conveys the influence of the heavenly bodies, we presume that no ,small pleasure will be afforded to the admirers of Astronomy by the insertion of the following observations on her by a gentleman, whose general knowledge and particular devotion,
to this divine science, render him equally an ornament to the circle in which he moves, and an honor to his country.-ed.

ON THE MOON.

IT is the property of the Moon to accompany the Earth in its orbit round the Sun, notwitbstanding the orbit in which he revolves round our globe. The diameter, by the most accurate calculation possible, is 2175 miles, the circumference 6831 miles, and the mean distance from the Earth about 240,000 miles. The time in which she moves round her axis is about 27 days, 7 hours, and 43 minutes; but in this time the Earth will have moved forward about 27 degrees in her orbit. Hence, it will be about 29 days, 12 hours, and 44 minutes, before the Moon will obtain the same relative situation with respect to the Earth and Sun.

This is the mean time between the period of one new Moon and another; though it will sometimes occur a little sooner, when the Moon's motion is quickest, in that interval after she has completed her revolution round her axis to the time of her next conjunction, but somewhat later, when she is then farthest from the Earth, and on that account slower in her motion.

Another known property of the Moon is, that she appears to us, at different points of her revolution, of a very different shape. After her change or conjunction, or what we call the new Moon, she must proceed to a certain distance in her orbit, so as to be out of the Sun's beams, before she can be, in any respect or degree, visible to us on the Earth. The quicker she is in motion, the sooner will this distance be accomplished. When the time of the change happens at a very early hour of the night, or, at least, soon after midnight, with a favourable velocity of motion, and a transparent air, the new Moon has been sometimes discovered towards the west, after Sun-setting, on the second
evening ; but otherwise, it will seldom be seen until the third evening, especially when the change occurs in the latter part of the night, or in the day. When it is first seen in this situation, it will appear very narrow and horned, and only that part will be seen which is nearest to the Sun; but will every evening become broader and broader, and be seen before its setting longer and longer, till one half of the face appears towards us, when she will have attained to her first quarter. From that time she will daily become more and more gibbous, until she appears with a full face, when she will shine through the night, and then will be the time of full Moon. In like manner, as the Moon advances, and gets nearer to the Sun the other way, she will daily decrease until she becomes invisible for about two days, a little more or less, before the next change or conjunction.

In the revolutions which the Moon makes successively in her orbit, it is also obvious that she does not move in the same direction with the Earth. In this case, the Sun would be eclipsed by her every new Moon, and the inhabitants of our Earth would be deprived of his light by such an interposition. From the same cause it happens, that the Moon is not eclipsed by the intervention of the Earth at every full Moon, when that body is between the Sun and Moon. It has therefore been found by continued observation, that the two directions cross or intersect each other in points exactly opposite, and in an angle not much exceeding five degrees. But when these conjunctions or oppositions happen in those parts of the orbits so near to these points of intersection, as to become less than the sum of half the diameters of the Sun and Moon ; though the directions from the angle just mentioned, if their distance in any other part of the Earth is less than about 32 minutes, an eclipse may be reasonably expected, either of the Sun at the new Moon, or of the Moon at the full Moon. At no other time can they possibly happen. But these things are only stated generally at present, of which

NO. III.
a more particular and exact notice and illustration shall be given hereafter.

These points, near which the Earth and Moon must be, in their respective orbits, to occasion eclipses, are called the nodes, or knots, as it were, to connect the two orbits logether in two opposite paths; and if these nodes or points continued the same, the eclipses would happen in the same manner, or at the same seasons of the year successively. But it is found by observation, that these nodes also have a retrograde motion, and do not remain fixed to any particular point of the ecliptic, or in any special degree and minute of any of the twelve signs. This retrograde motion is such as to complete one revolution, or to pass through every sign and degree of the ecliptic in 18 years, 224 days, and about 3 hours. A daily motion of about 3 minutes and 11 seconds backward, will occasion the succession of the same eclipses to recede backward also, in the order of the signs, and consequently in the order of the months; though with some slight variation as to their being the same identical eclipses, of which there will be occasion to take notice hereafter, when the eclipses come under our immediate consideration.

It has been observed, that the surface of the Moon presents to the inhabitants a great variety of hills and mountains. It is also manifest, that there are some small and many large spots of a brighter hue, interspersed in the darker portions of the face; which appear to stand, or push off at several distances from the boundary line. In the lucid part also are many small spots of a sombre cast, dispersed in various parts; and from their appearance to us, it cannot be doubted that some of them must be deep and hollow cavities, because their dark sides are always the nearest to the Sun, and their bright sides farther removed from him. The contrary must have appeared had they been mountains; for then the brighter sides would be seen nearest to the Sun, and the darker sides would be most remote.

Some of our writers on this subject have presented to the public a delineation or figure of the face of the Moon which is visible to the Earth. In a calm and clear night, when the Moon is at the full, or on the opposite side of the Earth from the Sun, it cannot be difficult to mark out the appearances of oceans, seas, and lakes; to parcel out the parts which rationally enough may be considered as countries or islands, and to distinguish the most remarkable mountains and hills which appear on the Moon's enlightened face. I have such a delineation before me at the present moment, in which are distinguished six such mountains, and denominated according to the most noted eminences on the surface of our globe ; as Mount Sinai, Mount Taurus, Mount Siphor, Mount Etna, Mount Apenninus, and Mount Olympus, some of which are undoubtedly higher than any on our earth. The shadow of some of them may be very distinctly seen by the aid of a good telescope, as it appears longer or shorter on the face of the Moon's surface, and as the Moon is either approaching to or receding from the Sun. And it is recorded, that Ricciolous, upon viewing the Moon about four days old, particularly observed the point of a hill, which he called St. Catherine, near the north part of Mount Taurus, to be distinctly illuminated, being at that time distant from the surface apparently about one eighth part of the Moon's semidiameter; and this by the rules of trigonometry, which will be explained in another part of our plan, will give no less than three miles for the height of that mountain, which is much higher than auy known mountain on our globe.

The various inequalities or interruptions of a right line on the surface of the Moon, at the separation of the light from the dark parts, appearing to us to be irregularly toothed or jagged, can only be accounted for by concluding, that the Moon's surface is very uneven, and much broken, and diversified into hills and cavities, or hollows. It is not in one part or one line of this separation only that these inequalities
occur, but in every part and in every line of separation; which sufficiently demonstrates the existence of these irregularities in every part of her surface, in a way similar to to the varieties which are known to exist on the surface of our Earth,

Besides the mountains which I have already remarked, the face which presents itself to our notice has been divided into the following countries, to which names have been assigned, similar to those which are situate to our globe; as Reigo Hyperborea, or the northern region, Sarmatia, Taurica Chersonesus, Italia, Mœesia, Asia, Colchis, Sicilia, Peloponnesus, Scythia, Persia, Arabia, Palestina, Egyptus, Lybia, and the Isle of Circunna, with other names of less note. In addition to these distinguishing appropriations, the following names have also been given to the various oceansand seac, \&c. which are supposed to exist on the surface; as Mare Hyperboreum, or the northern sea, Paludes Hyperborea, or the northern marshes, Simus Hyperboreus, or the northern bay or gulf, Mare Eoum, Mare Mediterraneum, Pontus Euxinus, Palus Meotis, Mare Caspium, Mare Adriaticum, and the Propontis,-names which are sufficiently known to our geo.graphers, and have probably been adopted as nearest in similarity of form or situation to the places respectively on our globe.

But others have drawn a very different conclusion, in many of these respects from what has been. stated. These persons argue, that there are no seas, lakes, \&c. and assign as a reason, that these appearances can never be seen in any liquid substance; which I have considered it is my duty to mention, though without being supposed to give it any particular sanction or approbation. Yet I shall not contend about the appearances through a telescope, nor presume to assert that the dark and dusky colour which is seen in the Moons

- surface may not procced from a kind of matter or soil that reflects less light than from the other regions; but in
reasoning from analogy, it is not very probable, that the Moon should be destitute of oceans or seas, which such an opinion seems to exclude, or at least to leave unaccounted for; or that similar accommodations or conveniences should not have been provided by thre great Author of Nature fur her inhabitants, if she has any we can see no reason to doubt it), as the people of our ghobe are furnished with. How far the equilibrium can physically be maintained, without a certain portion of water as well is land, is a consideration not entirely to be overlooked; and as the distance from the Sun is comparatively the same, which can only be more or less by the small semi-diameter of the Moon's orbit, or about 240,000 miles from the Earth, the same reasons seem naturally to follow, for the Moon's being supplied with the same adrantages.

But these observations are subject to one remark, which is, that the length of their day is equal to our lunar month, for all that time is included in one revolution round her axis. Her days and months, therefore, will constantly be of the same length, or almost fifteen of our days each. The year will be exactly the same with our's; because she must go round the Sun, in company with, or as an attendant upon the Earth, in the same time as that does. Her difference of seasons will be much less than on our Earth, having only a small inclination of her axis, of six degrees and a half; so that the variation between her summer's heat and her winter's cold, must be comparatively inconsiderable. Hence, there will be only thirteen degrees of torrid zone on the parts most opposite to the Sun, and thirteen degrees of frigid zone on those contiguous to her poles ; which consequently must leave 77° for what we should call her temperate zones, both in the north and south parts from her equater. In what respects this great length of day and night may be convenient, or otherwise, to the inhabitants there, cannot become us to determine. Yet it can scarcely be deemed presumptuous to
hazard a conjecture, that there may be something physically different in their frame and constitution, so as to be adapted to their state and condition.

A difference of opinion has been advanced as to the Moon's possessing an atmosphere similar to ours. We know it was the opinion of Sir Isaac Newton, that she has one. But against this it has been observed, that the fixed stars are never obscured in the Moon's appulse to them; but are seen, on the contrary, to disappear instantaneously, at the very moment of their occultation, and in the same manner to recover their light on their appearance on the other side. Nor let any one suppose that subsequent astronomers, by differing in opinion in some instances from the sentiments and reasonings of that great luminary of learning, are to be censured as wishing to depreciate his doctrines. However great, it would be too much to conclude that he was in every respect fallible; and, however comprehensible his rational faculties and the powers of his mind, we may assure ourselves, that, in the minuter matters of conjecture, he would have met a variation of opinion with a becoming condescension to the sentiments of others, though conviction might not have followed. This observation will apply no less forcibly to some other parts of my present subject, where, in various views, the opinions and reasonings of others have been sometimes introduced, and at other times my own remarks have been given, on different branches of the science. Yet, basest of the base must be the ingratitude of those who will attempt, notwithstanding these minuter variations, to detract from the veneration due to the memory of either a Newton or a Kepler.

狩

To the Editor of the Monthly Correspondent.

 SIR,Of all the varieties of violent death to which the condition of the universe exposes us, or which the ingenious malice of
mankind has invented ; there is none from which the imagination recoils with such extreme horror, as from that of gradual suffocation. The heaviest inflictions of bodily pain, " Luke's iron crown, and Damien's bed of steel," shrink from the comparison. Weighed in the scale with the terrible burying alive of the Roman vestal that had been found guilty of incontinence, what are they but comparatively puny sufferings ? the vengance of mere Tyros in the art of cruelty? in pain the mind is passive, or soon sinks under it if excessive; but in slow suffocation, there is the dreadful struggle of the will, the incessant unavailing effort ; the more incessant and violent, the more it is felt to be unavailing.

Without having recourse to the experience of those who have been recovered from drowning, or other modes of strangulation, by a summary process, I believe no one that has dabbled much in the water in his school days, as most of us I suppose have done, will ever forget the horror of that initiatory ceremony, or ordeal, which is usually performed upon the tender novice, the first time of his bathing, which is termed ducking. The appellation is ludicrous, and the sports of children may seem to have no very terrible tendency ; but the poor devil who has been ducked in early life, i. e. held with his head downward by violence in the water, till the strength or patience of his companions was exhausted, will have a tolerable notion through life of the comforts of gradual strangulation.

Whether or not my own recollections are more vivid on that subject, or that I have constitutionally a greater repugnance to that mode of dying than my neighbours, I am often shocked at a custom which many good kind of people practise, and see practised every day, with approbation; I mean the custom of stifling infants, not between two feather beds professedly, but what is almost as bad, between the bed or cradle clothes, out of pure love and kindness. In most famimilies, when an infant is put to sleep, the air is excluded
with as much care as if it were some element to which the new-born babe was not " native and endued," as Shakespeare phrases it. His little face is mufled up with the rest of his small person. He is laid on his back in the midst of the feathers, which rising up, are as a wall to him on this side and on that. The clothes naturally very soon rest upon his mouth. The very action of sucking, which, as symbolical to him of the first and closest instinct of life, he applies to every substance with which his young experience comes in contact, attracts the sheet further within his lips, and from a pledge of life and nutriment, becomes a mode of death. In this imbecile state, without the power or sense to extricate himself, behold him laid craving in vain for that nourishment of free respiration, which is no less necessary for his well being, than the friendly juices with which nature has supplied the kindly maternal fountains for his sustenance.

We find every animal, even a sparrow, destroys the air it briathes in a surprisingly short time. No need to exhaust it by an air; only prevent access of fresh air, and the experiment will be complete. A frog will hop about very gaily without his heart, if it be your fancy to deprive him of it ; but deny him fresh air, and he pushes off directly for the banks of the river Styx, there to croak his displeasure against the unkind usage of man.

Why is this all-vivifying principle considered as a viand too luxurious for the infant, which nature bestows a free boon upon frogs and sparrows?

When the man-child grows a little more acquainted with his own strength, he drives off the clothes, to the great annoyance of the good woman that attends him, who carefully replaces them, and pathetically bemoans the disuse of the good old custom of swaddling; by the help of which she could have kept down effectually the little struggling saucy probationer for breathing. Peace to the shade of the bizard Rousseau! to him the human generation is indebted for its
rescue, from this devilish invention! to him it is owing that new-born man, by a process of restraint the very reverse of the old Egyptian practice, is not still bound hand and foot, a preposterous living mummy.

As strange it is, that good womanhood should still, in spite of the advancement of science, in these knowing days, retain a custom even more intolerable. Many a person at this day, I have no doubt, owes an ill state of health to this absurd system of excluding the air in infancy, in the same manner as those who survived their cruel treatment in the dreadful prison of Calcutta were visited by periodical swelled' legs, and other miserable symptoms all their life after. In their cases, the connection between the disease and the cause was easily traced. Poor children cannot tell the secrets of their prison-house.

A warm, comfortable cloak, as it is called, may be as fatal to them as the dungeon of Calcutta. A case of that kind was reported about three years ago in the public prints. A poor woman had wrapped up her infant so close under a thick cloak, during a long walk through the snow, that when she uncovered it, the life was quite gone from the poor baby. This happened at Paddington. Unquestionably the child had cried as long as he was able, and was only covered up the closer; at last the mistaken good woman was pleased to find her brat composed to rest *.

[^0]Here was an infant fairly killed with kindness ; and much, I fear, that this has by no means been a solitary instance. But it is not always easy to get at the causes of an infant's death. There is a solution always at hand. It is but saying, the child clied of convulsions; and thus, substituting the symptoms of a malady for the efficient cause of the malady itself, many a mistaken tender mother shelters her own ignorance or improvidence under a general term, and silences self-reproach with the common-place observation of how great a proportion of children born every year die under one or two years of age.

Poor candidates for a little frail breath! and well they may, when this chief nourisher in life's feast is debarred them. We deny them the common air, as if there were any other medium of existence for us besides the breath of life, which the Almighty put into man's nostrils. I once saw a noble steed thrown into a state of furious agitation, by having drawn up into his nostrils the bag out of which he was eating his corn. His master, who was at some distance, ran to relieve him, and I never shall forget the neighings with which this grateful animal spoke forth the sense of his benefit, as he snapped up the returning ether with wild extacy. As this bag to the horse, so is the sheet to the poor baby,

[^1]which falling on his mouth, and sucked up by his breath, must operate as a valve to exclude cvery breath of wholesome air from mouth to nostril; besides the feverous irritation, the fretting, galling, impotent restlessness, it must produce in that helpless, senseless condition of exposure.

The mariner parching under a long calm in the tropics, is but a faint image of his privation. Imagine the seaman's short allowance of water dealt out to him. All his inward parts are fire. He snatches the delicious relief his heart is sick for, he cannot drink fast enough, he would swallow it entire, not by successive drops. What stops him so suddenly ? An ocean of fresh water would scarce allay the man's thirst. His malady unabated, does he begin to loathe the unpalatable medicine ? the water is tepid, foul, and peopled with corruption's unsightly brood; a thousand unclassed forms skimming about with uncouth and repelling motion. Well might we, that have access to the pure stream, imagine him overpowered with disgust.-No such thing. It is provident and fearful husbandry which forbids the lengthened draught. Necessity, with giant arm, arrests him in his miserable indulgence. Cruel indeed would be the enemy that bars the approach of such a man to the stream that was monning to vaste.

And cruel in the effect at least, if not in intention, the mother who shuts out from her infant the inexhaustible stores of heaven. Can any one doubt, that to the poor gasping baby a draught of fresh air would be reviving, as the fresh stream to the mariner, or the waters of his native spring at Bethlehem to the war-heated David, when he longed for them in the cave of Adullam ?

I have read of a tribe of savages who were accustomed to bury their parents alive, when through age and weakness they became unable to add any thing to the common stock. The image is revolting enough to humanity. Nevertheless, if my spirit were about to enter the body of a little babe, and
had her choice where this little helpless mass should first breath the vital air, I do not know but it would be a preferable choice to take her chance of mature sepulture with the savages, rather than in some more favoured land to undergo the process of imperfect strangulation, for some hours of every day, during the first year or two of the fleshy investiture.

We can all remember when the treatment of patients infected with the small-pox had for its basis this same airdenying ordinance. The practice of one or two enlightened physicians overcame the prejudice without much resistance. It were to be wished that some of the humane and liberal among the profession would intcrest themselves in a case not strictly professional, and interfere to remove the pneumatophobia, or horror of air, in mothers and nurses, which has so long operated to the exclusion of poor babies from that common and universal right, that ancient and imprescriptible inheritance, that unalienable claim of all the sons of Adam, the privilege of breathing. I am, \&c.

Pnevmatophilos.

APHORISMS BY PHILALETHES.

[Continued from p. 60.]
Erit in visu nati erit vitium cum Luna Soli adversa est, ac nebulosis stellis conjuncgitur. Item cum Luna est in occiduo cardine ambæque malificæ stellæ in cardine orienti, Sol quoque cardinalis est, natus ipse oculis capietur.

Thus translated :
There will be defect in the sight of persons born when the Moon is in evil aspect with the Sun, and in conjunction with nebulous fixed stars.-But when the Moon is in the western angle, and both the malefic stars in the eastern angle, the Sun also being cardinal, persons born under such positions will be deprived of sight.
[To be continued.]

To the Editor of the Monthly Correspondent.

SIR,
London, Feb. 19, 1814.
I fave much pleasure in finding that there is at last a medium through which the admirers of the predictive art may promulgate their sentiments, and unfold the beauties of starry science; this has been long wanting to rivet the attention of the public, and to carry conviction to all thinking minds of the stable foundation on which the art is raised.

It is greatly to be lamented that this has been so unfortunately delayed. It is indeed with me a subject of the most poignant regret, that the lovers of this divine art should so long have been bercft of the means of perfecting the celestial structure, and of consummating their own ardent wishes.

At length, however, in the onder of revolving periods, after a long, a very long night of the darkest ignorance, an epoch has arrived which may hereafter be regarded as a new day of truth and brightness. May the believers in planetary influences, seize with energy the auspicious accasion, to dissipate the mists that have obscured the beauteous aspect of the skies.

The prayers and thanks of all legitimate students, will go with you, Si , in your labours, and the discriminating patronage of the public will ensure to you ample recompence for your exertions ; added to which, you will have the cousolation of knowing, that you have afforded the means of rescuing truth from ignominy, and the pursuit of it from shame.

I promise myself the pleasure of being a regular correspondent, and hope that at least I shall contribute my mite towards the furtherance of your views; as a pledge of which I send you the nativity of Her Royal Highness the Princess, Charlotte of Wales, it being full of interest to the scientific reader, and may be calculated hereafter to produce some. happy illustrations of elementary influence.

219 25

N
Lititude of the Planets.

The illustrious and lovely subject of this geniture, has been truly designed by the language of loyalty and affection, Briton's best hope; the approaching union between Her Royal Highness and the Hereditary Prince of Orange, is a theme for honest exultation throughout the land. May it be productive of felicity to themselves, and of happiness and prosperity to their respective countries.

The celestial sign Aquarius intersects the circle of the horizon in the east, and is most benignly aided by the presence of Jupiter and Venus: such irradiations are in all things favourable, but chiefly indicative of those winning
manners and attractive qualities that so eminently distinguish the royal maid.-

When she appears array'd in all her charms, What eye but brightens, and what heart but warms?

The mutually favourable rays between the fortunes and Saturn (who is ruler of the ascendant), and the strong reception of Saturn and Mercury, connected with the fact of Jupiter and Saturn being joint rulers of the mental faculties, and most happily disposed, all conspire to show the possession of a most elevated mind, with an understanding of the first order. Happy configurations, thrice happy rays! that not only give genius and taste, but array the first qualities in the heavenly robes of virtue.

Whoever attentively considers the import of the positions named, by the rules laid down in the quadripartite, will see abundant proofs of the full possession of faculties calculated to preside over the destinies of an empire, and to give happiness and glory to a great people.

This princely position of Luna is an irrefragable testimony of great popularity and honour; and the Trine aspect of Jupiter and Saturn (the rulers of the superior angles), fortified by the propinquity of the benefics to the degree ascending, renders preferment easily attainable, and no deficiency of worldly greatness.

Much more might be said on this truly interesting figure; but, at present, I shall content myself with adding, that a natural and honourable termination of existence is clearly defined. With best wishes for your success,

I am, yours, J. W. P.
P.S. Although I have reason to think, that for the elucidation of particular events, the preceding figure may want rectification, yet a general judgment will not be affected by any alteration of time it may admit of.

To the Editor of the Monthly Correspondent.

sir,

On seeing the nativity of Richard Savage, the poet, inserted $^{\text {s }}$ in the second number of your publication, I presumed it would not be unacceptable to some of your readers if I made a few observations on it to elucidate the effects of elementary agency, and to prove the satisfactory knowledge we may derive from a studious research into this truly valuable and pleasing science.

I am, Sir, yours, J. S.

> No. 1, York Strest, Globe Road, Mile End.

GLEMENTARY INFERENCES, DRAWN FROM

THE NATIVITY OF MR. RICHARD SAVAGE,

According to the Canons of Predictive Astronomy.
The mental powers and abilities are clearly signified by the singular position of Mercury in the fixed sign Aquarius, increasing in light, and in his own triplicity, just past the trine of Mars and the conjunction of his dispositor Saturn, who is elevated in his greatest dignities. Such positions and configurations pourtray a strong, comprehensive, and sagacious mind, joined to a tenacious memory, which fitted him to engage with success in the most difficult disputes. The Moon is in reception and trine aspect with Venus; and also beholds Mercury. Saturn, the dispositor of Venus, is likewise near a conjunction with that planet, which bestows a luxuriant, ready poetic genius. But, though the positions at birth gave those superior talents, they gave manners diametrically opposite to rectitude and propriety ; for Mercury is in square aspect with the Moon and Jupiter, who oppose each other, and are both severely afflicted by Saturn. Mars also squaring Venus from cardinal signs, shews his strong inclination to voluptuousness and vice, would too often overthrow every better principle. Saturn and Mars,
who (according to Ptolemy) assume the government of the mind, give a keenness and depth of wit; but their baleful aspects to the Moon and Mercury in fixed signs, influenced him to deeds that involved him in many inextricable difficulties. It is an unerring rule, that when the malefics claim dominion over the mental faculties, and the Moon and Mercury are in fixed signs, especially if they behold each other by evil rays (as in this case), those born with such positions, will possess too positive and stubborn an opinion, never retracting what they have advanced, however erroneous and prejudicial it may prove to them. From the positions of Jupiter and Venus it is evident, under the influence of favourable directions to them, he would experience the smiles of furtune, and chiefly through females of eminence, as Venus and Jupiter are in feminine signs, and the former cardinally placed; but what they promised could not be of long duration, because they are greatly oppressed; Saturn, who has the principal dominion of the figure, by disposing of the Sun, Mercury, and Venus, the latter of whom receives Mars, who is Jupiter's dispositor, being also in conjunction with one luminary, and in square to the other, together with the quadrate state of the Moon to the Sun and Mercury, very aptly shew the parental troubles and inevitable ruin he was born to experience, through the inveterate persecution of his mother; but the position, as before stated, of Mercury in a fixed sign, in conjunction with Saturn so highly elevated, gives a mind above submitting to his feelings; for whatever privations he might experience, or difficulties he had to encounter, he would be enabled to endure them with determined and persevering fortitude. This elementary impulse was absolutely requisite ; for under the influence of such unfortunate positions, however superior the station of birth may be, unless a miracle could take place, those born with them must fall into the most abject state.

NO. III.

I beg to make a few remarks on the nativity of an infant, which appeared in the first number of your work. The Sun in that nativity is undoubtedly hyleg: but there are other configurations of a baneful nature, which I presume aided the influence of the malign; for the ascendant, which is one of the principal aphetic places, is severely oppressed by the body of Saturn, who squares the Sun, and the Sun also afflicts the ascendant by the same aspect which is similar in directions of the apheta to his own square. Though I would not wish to make any innovations, as I only allow the true dispenser of life to shew the time of death, yet if the hyleg meets with the weaker hostile rays, and at the same time the other aphetic places, as the ascendant Moon, \&c. are afflicted, no ray of the benefics falling in, death will undoubtedly take place, as may be proved by numberless examples.

To the Editor of the Monthly Correspondent.

ON THE PART OF FORTUNE.

The part of fortune is the mundane place of the \mathbf{C} at \subset rise, and may be directed two ways ; in mundo or the world, i. e. the same as the ascendant, and to the mundane parallels, and one way in the zodiac, viz. to the zodiacal parallels.

The pole of part of fortune, may be ascertained in the same manner as the houses or planets, which pole may be called the lunar horoscope, and is in every sense to be directed the same as the ascendant in the radical figure of birth.

The part of fortune may be directed to the mundane parallels, but not to the rapt parallels, since it is only a poin', and thercfore not capable of mundane motion.

Respecting the directions of part of fortune, it must be observed that the part of fortune in the radical figure, and at all times has the same declination as the (, therefore when-
ever the (comes by her motion to have the same declination as the planet, to which she is directed, the part of fortune has the same; therefore there is no necessity for directing the part of fortune to the zodiacal parallels, but directing the (only, and the part of fortune is always the same.

I am, \&c. J. M.

To the Editor of the Monthly Correspondent.

 sir,$T_{\text {HE }}$ circumstance of a fossil human skeleton having been found in Guadaloupe, and brought to this country by admiral Sir A. Cochrane, naturally excited much curiosity, as hitherto nothing of the kind had ever been found. It is deposited in the British Museum ; and Mr. Kœnig, the keeper of the minerals in that natural establishment, has given a short, but not very satisfactory, description of its external appearance, in a letter to Sir Joseph Banks, which was read to the Royal Society, on the 2 d instant. According to this gentleman, who is better known as a botanist than mineralogist, the whole mass, containing the skeleton of a man, is eight feet long, two feet broad, and weighing about two tons. The nonexistence of fossil human sleletons has been considered a very satisfactory proof that our terrestrial globe has had a beginning; and, that the origin of mankind must have been subsequent to its great convulsions, which ingulfed the numerous animals found in the bowels of the earth, in all 'countries; otherwise no reason can be' assigned why the bones of men are not as frequently found as those of animals. Nearly half a century ago an attempt was made to prove, that a fossil human skeleton was discovered in this country; but the first physiological examination of the alleged human bones removed all controversy on the subject. The present fossil man is therefore the first which has yet been dis-
covered; it was found in a mass of calcareous rock, composed chiefly of madrapores and other analagous substances, below high-water mark, and in the neighbourhood of the volcano called the Souffriere, in Gaudaloupe. Unfortunately the skeleton wants the skull and the vertebræ of the neck; some of the ribs are also broken, and an arm is imperfect; in other respects it is in tolefable preservation. The mass or stone is a very hard, granular lime, resembling calcareous sand-stone, and contains a few shells, some of which are not known, others are venuses, \&c. Mr. K. does not venture to guess at its probable antiquity; but Sir Joseph Banks, whose observation is more extensive, concludes, that it is very modern. The local circumstances fully justify this opinion of the learned President, who has himself had opportunities of witnessing how rapidly coral reefs, and similar calcareous rocks, are formed by marine insects. Other fossil bones have been found in the same vicinity: add to this, that the contiguity of a volcano, and the consequent increase of temperature in the water, furnish an easy explanation of this phenomenon, as we know that hot water dissolves a considerable quantity of carbonat lime, and deposits it in masses of very hard stone. For instance, we find kettles, used in boiling New-river water, become coated on the inside with a solid plate of carbonat of lime, above a quarter of an inch thick, in a few months; and, at the end of a year or two, the weight, solidity, and hardness of the mass will surprize those unaccustomed to observe such effects, or calculate the rapid formation of calcareous stones. If then a few months can effect so much by the diminutive powers of our culinary fires, what may not a volcano effect in a few years? The discovery, then, of this fossil human skeleton does not militate against the conclusion already stated, if, indeed, it may not be considered as tending to confirm it. Should, however, any of your Correspondents, Mr. Eutor, be able to give a
better explanation of this phenomenon, I shall be happy to see it in your respectable publication.

I am, Sir, yours, P. P. P.
Feb. 20, 1814.

To the Editor of the Monthly Correspondent.

 SIR,The following Nativity exhibits a striking proof of astral influence, as it respects the prematurely extraordinary genius and celebrity of the native; indicating at the same time an eventiul life, active, bustling, and various ; more especially till aiter 25 or near 26 years of age.-The Moon and Mercury being in cardinal signs, the Moon in Aries in zodiacal trine, and in mundane sesqui-quadrate to Mars; denote a bold, enterprising, and aspiring mind : and it is to be particularly noticed, since such positions are rare, all the planets, the Sun excepted, are in fiery or airy signs, which aptly denote precocity or premature genius, and which was aided and made popular and splendid by a series of good directions, affording him friends, encouragement, and unbounded applause, from 3 or 9 to near 16 years of age; such as the midheaven to the conjunction of Jupiter, the Sun to the parallel of Mercury, both direct and converse ; and the Sun to the sextile of Mars in the Zodiac, and to the zodiacal parallel of Jupiter, and the ascendant to the quintile of Venus, and midheaven to the conjunction of Mercury, and the Sun to the conjunction of Jupiter; but he has had a rugged train of evil contigurations since 16 years of age ; and, in general, his fate will be extremely checquered, various and fluctuating considerably till rather more than 25 years of age : travelling is certainly denoted ; and I should judge the native will feel strongly inclined either to attach himself to the army, or apply himself to the study or profession of physic or divinity, as the Moon is in Aries so powerfully aspected by Mars. I am, Sir, your obedient servant, J. H.

BIOGRAPHICAL ANECDOTES OF RICHARD SAVAGE.

In the year 1697, Anne, Countess of Macclesfield, having lived some time on every uneasy terms with her husband, thought a public confession of adultery the most expeditious means of obtaining her liberty, and therefore confessed the child, with which she was then pregnant, to be the offspring of earl Rivers. Upon this, her husband applied, not to the écelesiastical courts for a divorce, but to parliament, for an act, by which his marriage might be dissolved, the nuptial ontract annulled, and the children of his wife illegitimated.

This act he obtained; and on March 3d was separated from his wife, whose large fortune was of course returned to her ; and in a short time she was married to colonel Brett.

While lord Macclesfield was prosecuting this affair, his wife was, on the 10th of January following, delivered of a son, whom earl Rivers appeared to consider as his own, by being his godfather, and giving him his own name, which was, by his direction, registered in the records of St. Andrew's parish, Holborn. The earl probably imagining, that a child, whose birth had caused a separation from a husband whom she hated, would be an object of great tenderness and regard to his mother. This, unfortunately for the helpless infant, left him solely to her care. It is difficult to discover what motives could be found to over-balance the natural affection of a parent, or what interest could induce her to treat her offspring with neglect and cruelty, instead of supporting and defending; to delight in seeing him struggle with misery, caused chiefly by her inveterate persecution from the first to the last hour of his life.

But whatever were her motives, no sooner was this son born, than disowned by her. She committed him to the care of a poor woman, whom she directed to educate him as her own, and enjoined never to inform him of his true parents. Thus, Richard Savage, though born with a legal claim to honour and to affluence, was in two months illegitimated by the parliament, and disowned by his mother, doomed to poverty and obscurity, and launched into the ocean of life, only that he might be swallowed by its quicksands, or dashed upon its rocks.

His mother could not indeed infect others with the same cruelty. To inquiries, dictated by the curiosity or tenderness of her relations, she was compelled to reply; and her mother, the lady Mason, probably to prevent more criminal contrivances, engaged to pay the nurse for her care, and to superintend the education of the child; in which charitable
office she was assisted by his godmother, Mrs. Lloyd, who looked upon him with peculiar tenderness till her death, which happening in his tenth* year, was another of the misfortunes of his childhood; for, though she endeavoured to alleviate his loss, by a legacy of $\mathfrak{E} 300$; yet, as he had none to prosecute his claim, her will was eluded by the executors, and no part of the money was ever paid.

He was not, however, wholly abandoned. The lady Mason still continued her care; and directed him to be placed at the grammar-school at St. Alban's, where he was known by the name of his nurse, without the least intimation that he had a claim to any other. Here he was initiated in literature; passed through several of the classes, and as he always spoke of his master with respect, it is probable, that the mean rank, in which he then appeared, did not hinder his genius from being distinguished, or his industry from being rewarded ; and if, in his peculiar situation, he obtained distinction and rewards, it is not likely that they were gained but by genius and industry.

While he was thus cultivating his talents, earl Rivers died \dagger. He had frequently inquired after his son, and was always amused with evasive answers ; but being now on his death-bed, he thoughtit his duty to provide for him, and, therefore, demanded a positive account of him, with an importunity not to be diverted or denied.-His mother, who could no longer refuse an answer, declared that he was dead; which is, perhaps, the first instance of a lie invented by a mother to deprive her son of a provision, which was designed him by another, and which she could not expect herself, though he should lose it. The earl, therefore, bestowed -upon some other the $£ 6000$, which he had in his will bequeathed to Savage.

The next gradation of cruelty, on the part of this unnatural mother, was to send him secretly to the American plan-

[^2]+ August 18th, $1 \% 12$.
tations, but in this she was frustrated, most probably because she could not easily find accomplices wicked enough to concur in so cruel an action, and the design of a mother so to expose her child to slavery and want without interest and without provocation, being so far beyond the stretch of common depravity, might give Savage protectors and advovates among those who had long traded in crimes, and whom compassion had never touched before.

Being hindered from banishing him into another country she soon after formed a scheme for burying him in obscurity in his own, and ordered him to be placed with a shoemaker in Holborn*, where he was employed at the awl till the death of his nurse, whose effects, under the idea that they were now become his own, it was natural for him to take care of, and amongst whose papers he found some letters from the Lady Mason, that informed him who he was, and for what cause he was concealed, determined him to quit his occupation.
[To be continued.]

To the Editor of the Monthly Correspondent. SIR,

I feel obliged by your attention to my request in forwarding to me the nativity of the immortal Nelson. The position of the heavens at this given period so remarkably accords with his extraordinary life, his various bodily accidents, his splendid and rapid advancement, the time and nature of his death, that there cannot be a doubt of the observed time being nearly correct; however, I have found occasion to alter it 13 m . which may be accounted for by the difference of clocks, or by not being observed to minutes, as the hour given was 10 in the morning, but I have rectified it to 13 m . past 10 , when the heavenly bodies were posited as in the following scheme.-

[^3]No. 111.
R. A. 15854

R. A. 33854

The planet Mars, the lord of the sign Scorpio, ascending the horizon in the genesis of this great and illustrious man, is his significator; we find him here exceedingly strong, being in his own house and triplicity, irradiated by the sextile beams of Venus, and nearly so aspected by the Moon, which position déscribes a middled-size person, prompt and determined, ambitous of glory, invincible in enterprize, and fearless of danger; but for the particular qualities of the mind, genius, and disposition, Ptolemy directs us to observe the position of the Moon and Mercury and their dispositors, and how they are afflicted or befriended, or are posited both à to the signs and houses. We find here the Moon is most excellently placed on the mid-hearen, nearly in conjunction with Venus,
and in mundane trine to Jupiter, Mercury is in his triplicity, in sextile to Jupiter, and in reception with Venus, which certainly are most excellent positions in respect to the qualities of the mind, indicating a quick perception, affability of manners, a friendly and generous disposition; though Mars, lord of the ascendant, in a fixed sign, casting his sextile to the Moon and Mercury, would denote him to be a strict disciplinarian; yet Mercury in sextile to Jupiter, from Libra and Sagittarius, and the Moon nearly joined with Venus, in mundane trine to Jupiter, manifesting his strict regard to justice, would make him universally beloved and respected by those under him, the Sun also being in a masculine sign, applying to the sextile of Jupiter, strongly dignified in his own house and triplicity, casting his mundane trine to the Moon and mid-heaven, become, according to Ptolemy's meaning (book iv. chap. 3d), a powerful satellite to both the Sun and Moon, and signifies extraordinary honours and advancements: in fact, the Moon and Venus in their triplicity, on the 10th, and fortunately beheld, more especially as Venus and Mercury are in reception, would make any person fortunate in their actions and pursuits, and give an ample share of popularity and fame. Here I may observe, that the nature of his profession is pointed out by the Maon and Venus on the mid-heaven in Virgo, an earthly sign, applying to the sextile of Mars, lord of the ascendant in the nativity; and Ptolemy says (book iv. chap. 5th), that if the significators of the profession are in earthly or watery signs, they relate to arts conversant about water or by water, \&c.; ; add to this, the Moon declining from the mid-heaven into the 8 th, the house of travelling would of itself denote distant travelling; but Mars, lord of the ascendant in a watery sign and cadent hoase; and nearly in mundane quartile to Saturn, in a cadent house, also greatly adds to the signification, and at the same time shews the dangers, toils, and bodily injuries and misfortunes he suffered in his eventful peregrinations.
SPECULUM TO THE FQREGOING NATIVITY OF

	Planets Latitude．	Declin．	Right Ascension．	Distance from the 10th or 4th．	Half are in Time．	Half are in Degrees．	Space of one House．	Zodiacal Parallels．	
	D．M．	D．M．	D． M ．	D． m ．	н．м．s．	D．м．	D．m．	D．m．	D．M．
\bigcirc		217 S ．	18538	2644 from loth．	548 48D．	87 12D．	29 4D．	$69 \gamma \bumpeq$	2151 财乐
）	3 3 2 N ．	12 56N．	15751	13 10th．	710 32D．	$10 \% 38 \mathrm{D}$ ．	35 53D．	46 ช ${ }^{\text {m }}$	2554Ω m
h	145 S ．	13535.	33041	813 4th．	116 oN	109 ON．	3620 N ．	712 ठm	2248 萑
4	0 19N．	22．16S．	25250	864 4th．	810 52N．	12243 N ．	4054 N ．	1140 If	1820 ஏ）
0^{2}	0.228.	1553 S.	21936	6042 10th．	432 0D．	68 oD．	2240 D	13178 m	$1643 \Omega \cong$
9	114 N ．	849 N ．	16230	336 10th．	647 8D．	101 47D．	33 56D．	725 吹夷	$2335 \sim \bumpeq$
\bigcirc	3 22S．	10 53S．	19659	3825 10th．	$5128 D$	75 10D	25 7D．	149 巩央	2811 奻
H	0.45 S ．	058 S ．	35939	9045 4th．	654 N ．	91 16N．	$30.35 N$ ．	$225 \sim \bumpeq$	2735 吹 x

JANUARY 1810.

Astronomical Tables.
FEBRUARY 1810.

MARCH 1810.

Astronomical Tables.
APRIL 1810.

Astronomical Tables.
MAY 1810.

$\left\|\begin{array}{l} M \\ D \end{array}\right\|$	Place of D' node.	$\begin{aligned} & \text { h's } \\ & \text { latit. } \end{aligned}$	ly's	latit.	$\begin{aligned} & \text { Q's } \\ & \text { latit. } \end{aligned}$	$\begin{gathered} \underset{\substack{\text { ¢} \\ \text { latit. }}}{ } . \end{gathered}$	eclin.	leclin.	leclin	leckin.	
1	$13 \simeq 28$	1 n 48	0 s 57	0 n 14	0 s	0 n 33	20 s 45	13 n 27	18 n 38	18 n 16	7 n 14
1	$13-9$	148	0 O 57	018	0 n 6	131	20842	$13 \quad 55$	$19 \quad 44$	0 15	
13	1250	48	$\begin{array}{ll}0 & 57\end{array}$	0 0 0	$\begin{array}{ll}0 & 21\end{array}$	$2 \begin{array}{ll}2 & 10\end{array}$	$20 \quad 40$	14	120	2153	${ }^{3} 46$
19	12	148	$0 \quad 57$	$0 \quad 25$	$0 \quad 35$	221	$20-37$	1487	2135	2310	
25	$12 \quad 1 \%$	48	$0 \quad 56$	$0 \quad 28$	$\begin{array}{ll}0 & 50\end{array}$	20	$20 \quad 34$	$15 \quad 13$	$22 \quad 20$	2	
$\left\|\begin{array}{c} \mathrm{M} \\ \mathrm{D} \end{array}\right\|$	long:			longit	latit.	declin.	longit.	longit.	lougit.	longit	git.
1	$\bigcirc 10$		$\begin{array}{ll}3 & 3\end{array}$		$0 \mathrm{~s} \quad 3$	5 n 50				29	
2	$11 \begin{array}{lll}11 & 22 & 7\end{array}$	15 16	,	2812		9811	14 R12	45	2311	3343	
3	12215	$\begin{array}{ll}15 & 33\end{array}$	$3 \begin{array}{ll}3 & 17\end{array}$	11 б0	$2 \quad 20$	1255	14	8	2354	$5 \cdot$	0
4.	131911	15 51	$3 \begin{array}{ll}3 & 24\end{array}$	2336	$\begin{array}{ll}3 & 17\end{array}$	$15 \quad 30$	14	$\begin{array}{ll}9 & 13\end{array}$	35	2	2238
5	$14 \quad 17 \quad 15$	168	$3 \quad 30$	6 II 0	45	$17 \quad 19$	4	27	519	24	4
\bigcirc	15			18			13	9811	261	28.38	26
7	1613	$16 \quad 42$	$3 \quad 40$	$0 ¢ 17$	$5 \quad 3$	$18 \quad 25$	13	9	$26 \quad 43$	2961	8
8	$\begin{array}{llll}17 & 11 & 18\end{array}$	$16 \quad 59$	$3 \quad 44$	$12 \quad 13$	511	$17 \quad 44$	13	$10 \quad 10$	$87 \quad 26$	1 II 5	$0 \Pi 41$
9	$18 \quad 916$	1715	$3 \quad 48$			$16 \quad 16$	1347	10	28	15	,
10	19711	$17 \quad 31$	$\begin{array}{lll}3 & 51\end{array}$	5, 58	442	$14 \quad 7$	1383	$10 \quad 39$	$28 \quad 50$	3 3	431
11	20	$17 \quad 47$	$3 \quad 53$			$11 \quad 22$	13	$10 \quad 53$	93	46	0
12	21.257	$18 \quad 2$	3		$\begin{array}{lll}3 & 37\end{array}$	$8 \quad 5$	13	11	$0 \Pi 114$	6 C	
\bigcirc	$22 \quad 047$	$18 \quad 17$	$3 \begin{array}{ll}3 & 57\end{array}$	$12 \quad 22$	$2 \quad 44$	$4 \quad 24$	13 31	$11 \begin{array}{ll}11 & 22\end{array}$	$0 \quad 56$	13	1
14	225835	$18 \quad 32$	3	250	$1 \begin{array}{ll}1 & 42\end{array}$	$0 \quad 25$	13827	1136	38	27	1
15	235622	$18 \quad 47$	$\begin{array}{ll}3 & 58\end{array}$	$8 \cong 1$	$\begin{array}{ll}0 & 33\end{array}$	3 s 42	$13 \quad 23$	$11 \quad 51$	$2 \quad 20$	40	13
15		19	$3 \quad 58$				$13 \quad 19$	12	$3 c^{c}$	1054	
17	2551	$19 \quad 14$	$3 \begin{array}{ll}3 & 57\end{array}$	cm19	152	$11 \quad 32$	1315	$12 \quad 19$	$3{ }^{3} 144$	12	16
18	26493	$19 \quad 28$	$3 \quad 56$	1935	3	$14 \quad 45$	1311	$1 \begin{array}{ll}12 & 33\end{array}$	$4 \quad 26$	1381	17
19	274714	19 41	$3 \quad 54$	$4 \uparrow 10$	3	$17 \quad 6$	$13 \quad 6$	1247	5	14.34	1913
\bigcirc	284454	$19 \quad 54$	$3 \quad 52$	$18 \quad 58$	$4 \quad 40$	$18 \quad 211$	132	13	$5 \quad 49$	15	¢0 35
21	2942	$20 \quad 6$	3		5	$18 \quad 211$	$12 \quad 58$	1315	31	T	1
29	II 0040	$20 \quad 19$	$\begin{array}{ll}3 & 45\end{array}$	1840	$5 \quad 7$	$17 \quad 6$	12. 54	$13 \quad 29$	15	1814	23
23	13746	$20 \quad 30$	$\begin{array}{ll}3 & 41\end{array}$	$3{ }_{\sim}^{m} 18$	450	14	$12 \quad 50$	1343	$7 \begin{array}{ll}7 & 5 \\ 8 & 1\end{array}$	1988	24 It
21	23522	$20 \quad 42$	$\begin{array}{ll}3 & 37\end{array}$	$17 \quad 40$		1130	12.46	$13 \quad 57$	3	$20 \quad 41$	$25 \quad 23$
25	33257	$20 \quad 53$	$\begin{array}{ll}3 & 31\end{array}$	13643	$2 \quad 26$	$7 \quad 40$	1241	$14 \quad 11$	$9{ }^{9} 17$	$21 \quad 54$	26 2t
26	43031	21	$3 \quad 26$	$15 \quad 27$		$3 \begin{array}{ll}3 & 30\end{array}$	123	$14 \quad 25$	9 5	23	,
\bigcirc	5284	$21 \quad 14$	$3 \quad 80$	$38 \quad 52$	$1 \quad 18$	0 n 45	1232	14	$10 \quad 41$	$24 \quad 21$	88
28	6.2536	21.24	$3 \quad 13$	$12 \gamma 1$	$0 \quad 8$	53	$12 \quad 28$	$14 \quad 58$	11 2s	$25 \quad 34$	
29	723	2131	36	2455	Is 1	$8 \quad 43$	$12 \quad 23$	156	12	26 AT	29.58
30	82038	2143	258	7836		$12 \quad 5$	$12 \begin{array}{ll}12 & 15\end{array}$	$15 \quad 19$	124	28	0 -641
31	918	21 52	250	$80 \quad 6$	$3 \quad 3$	$14 \quad 51$	1214	$1 \begin{array}{ll}5 & 33\end{array}$	13	29	

THE GEORGIAN, OR NEW PLANET.

Longitude.			Latitude,			Declination.		
D M 1st	11th	21 st	D M 1si	11th	21st	D M 1st	11th	21st
12 m 20 F	1155	$11 \quad 33$	0 n 25	0	$0 \quad 25$	15 ¢ 10	15.2	$14 \quad 55$

JUNE 1810.

JULY 1810.

AUGUST 1810.

SEPTEMBER 1810.

OCTOBER 1810.

D	$\begin{gathered} \text { placeof D's } \\ \text { node. } \end{gathered}$	$\begin{aligned} & \text { Ђ's } \\ & \text { latit. } \end{aligned}$	$\underset{\text { latit. }}{4 \prime \text { 's }}$		$\begin{aligned} & \text { Y's } \\ & \text { latit. } \end{aligned}$	$\begin{gathered} \text { ర̛'s } \\ \text { latit. } \end{gathered}$	h's	$\left\lvert\, \begin{gathered} \Psi ' s \\ \text { declin. } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \delta^{7 \prime \prime} \\ \text { dectin. } \end{gathered}\right.$	$\begin{gathered} \text { Q's } \\ \text { declin. } \end{gathered}$	declin.
1	$5 \bumpeq 22$	1 n 25	156	1 n 17	2 s 40	$3 \leq 29$	20 s 39	19 n 21	11 n 25	21×17	15 \$ 14
7	$5 \quad 3$	124	7	$1 \begin{array}{ll}1 & 18\end{array}$	$3 \quad 4$	$3 \quad 25$	$20 \quad 44$		$10 \quad 3$	$23 \quad 9$	$15 \quad 22$
13	4.44	123	17	$1 \begin{array}{ll}1 & 19\end{array}$	3.25	$2 \quad 29$	$20 \quad 49$	$19 \quad 11$	$\begin{array}{ll}8 & 41\end{array}$	$24 \quad 44$	13 4
19	4.25	122	17	$1 \quad 21$	$\begin{array}{lll}3 & 43\end{array}$	$0 \quad 37$	$20 \quad 54$	19	716	$25 \quad 58$	$8 \quad 43$
25	4	122	17	122	$3 \quad 57$	1 n 12	$20 \quad 59$	$18 \quad 57$		$26 \quad 52$	$5 \quad 27$
M		\%'s	Clock	D's	$D ' s$	declin		4's		Q's	¢'ı
D	longitude.	declin.	aft. ©	longit.	latit.	declin.	longit.	longit.	longit.	longit.	longit.
1	$\simeq 73743$,	10	11 mll	3 n	12 s 16	10.734	$1 \Pi 13$	3 m 33	231437	1 m 26
2	83650	$3 \quad 25$	$10 \quad 30$	2434	4	$15 \quad 3$	$10 \quad 39$	1 R11	411	$24 \quad 41$	148
3	93559	348	10849	$8 \uparrow 11$	$4 \quad 42$	$17 \quad 3$	1044	18	$4 \quad 48$	$25 \quad 45$	24
4	1035	$4 \quad 12$	11	$21 \quad 59$	5	18	1048	15	$5 \quad 26$	$26 \quad 49$	$2 \quad 12$
5	$11 \quad 3422$	435	$11 \quad 25$	5 V 958	$\begin{array}{ll}5 & 17\end{array}$	18	$10 \quad 53$	12	63	$27 \quad 53$	2 R14
6	123336	$4 \quad 58$	1143	$20 \quad 7$	5	$16 \quad 53$	$10 \quad 57$				2
\bigcirc	133252	$5 \quad 21$	120	$4 \sim \sim 24$	$4 \quad 38$	$14 \quad 40$	112	$0 \quad 56$	$7 \quad 17$	0 ∓ 0	158
8	14329	5	$\begin{array}{ll}12 & 17\end{array}$	$18 \quad 46$	$3{ }^{3} 505$	1133	11	$0 \quad 52$	$7 \quad 55$	$1 \begin{array}{ll}1 & 3\end{array}$	39
9	$1 \begin{array}{lll}15 & 31 & 29\end{array}$	6	$12 \quad 33$	$3)$ 9	${ }_{2}^{2} \quad 50$	$7 \quad 43$	1112	$0 \quad 48$	$8 \quad 32$	2	11
10	163050	$6 \quad 30$	$12 \quad 49$	$17 \quad 30$	$1 \begin{array}{ll}1 & 39\end{array}$	$3 \quad 26$	$11 \quad 17$	$0 \quad 44$	9	$3 \quad 8$	33
11	$17 \quad 3013$	$6 \quad 53$	13	$1 \gamma 43$	$0 \quad 21$	10	1122		$\begin{array}{ll}9 & 46\end{array}$	$4 \quad 10$	$29 \simeq 47$
12	$18 \quad 2939$	$7 \quad 15$	$13 \quad 20$	$15 \quad 45$	0 s 56	$5 \quad 21$	11.27	0	$10 \quad 23$	5	$28 \quad 55$
13	19296	$7 \quad 38$	13	2982	2	$9 \quad 19$	1132	32	11	6	27 57
\bigcirc	20.2835	80	$13 \quad 49$	$13 \bigcirc 1$	$3 \quad 13$	12.42	1137	0	118	$7 \quad 16$	$\begin{array}{ll}26 & 51\end{array}$
15	21286	823	14		44	$15 \quad 21$	1142	$0 \quad 23$	$12 \quad 14$	$8 \quad 17$	$25 \quad 41$
16	$22 \quad 2740$	$8 \quad 45$	$4 \quad 16$	$8 \amalg 58$	443	17	1148	0	1251	$\begin{array}{ll}9 & 17\end{array}$	$24 \quad 87$
17	$23 \quad 2715$	9	$14 \quad 28$	$21 \quad 29$	56	$18 \quad 6$	1153	$0 \quad 13$	$13 \quad 28$	$10 \quad 18$	$23 \quad 13$
18	24.2653	$9 \quad 29$	$14 \quad 40$	$3 \sigma 13$	5	$18 \quad 9$	1158	0	$14 \quad 5$	1118	22
19	$25 \quad 2634$	$\begin{array}{ll}9 & 51\end{array}$	$14 \quad 51$	1546	$5 \quad 10$	$17 \quad 24$	12	$0 \quad 3$	$14 \quad 42$	$12 \quad 17$	50
23	26261610	$10 \quad 13$	15	$27 \quad 40$	$4 \quad 52$	$15 \quad 52$	12	29857	$15 \quad 19$	$13 \quad 16$	19
\bigcirc	27.26	$10 \quad 34$	$5 \quad 11$	$9 \Omega 32$	$4 \quad 21$	$13 \quad 41$	$12 \quad 15$	$29 \quad 51$	$15 \quad 56$	$14 \quad 14$	$18 \quad 49$
22	28.254910	$10 \quad 56$	$15 \quad 21$	2125	3139	$10 \quad 55$	$12 \quad 21$	2945	$16 \quad 32$	$15 \quad 13$	18 1 1
23	292538	1117	$\begin{array}{ll}15 & 29\end{array}$	3 MR24	247	$7 \quad 40$	12.27	¢9 39	$17 \quad 9$	1611	$17 \quad 23$
24	M 02530	1138	$15 \quad 37$	$15 \quad 35$	147	42	1233	$99 \quad 93$	1746	$17 \quad 9$	$16 \quad 56$
25	1252411	$11 \quad 59$	1544		041	$\begin{array}{lll}0 & 10\end{array}$	$12 \quad 39$	$29 \quad 27$	$18 \quad 22$	$18 \quad 7$	16
26	22520	$12 \quad 20$	$15 \quad 51$	10^22	0 n 29	3 s 48	1245	$29 \quad 20$	$18 \quad 59$	194	169D37
27	$\begin{array}{llll}3 & 25 & 19\end{array}$	$12 \quad 40$	$15 \quad 56$	$23 \quad 42$	$1 \begin{array}{ll}1 & 38\end{array}$	$7 \quad 41$	1251	$29 \quad 14$	19 36	$20 \quad 0$	$16 \quad 44$
-	$\begin{array}{lllll}4 & 25 & 19\end{array}$	130	16	7 m 2	$2 \quad 44$	$11 \begin{array}{ll}11 & 17\end{array}$	12.57	$29 \quad 7$	$20 \quad 12$	$20 \quad 55$	$17 \quad 2$
29	52521	$13 \quad 21$	$16 \quad 5$	$20 \quad 39$	342	$14 \quad 21$	$13 \quad 3$	$29 \quad 0$	$20 \quad 49$	2150	$17 \quad 30$
30	62525	$13 \quad 40$	$16 \quad 9$	$4 \uparrow 30$	$4 \quad 28$	$16 \quad 40$	$13 \quad 9$	$28 \quad 53$	21.26	$22 \quad 44$	18 7
31	72531	140	$16 \quad 12$	1832	$4 \quad 59$	180	1315	2884	223	$\begin{array}{lll}23 & 37\end{array}$	18 53

THE GEORGIAN OR NEW PLANET.

Longijude.			Latitude.			Declination.		
1st.	11th.	21 st .	1st.	11th.	2151.	1st.	11th.	21st.
12 ml 23	$12 \quad 57$	$13 \quad 32$	On 21	021	$0 \quad 21$	15 s 14	$15 \quad 24$	$15 \quad 35$

NOVEMBER 1810.

$\left\|\begin{array}{c} M \\ \mathbf{D} \end{array}\right\|$	Place of D's node.	$\begin{gathered} \text { h's } \\ \text { latit. } \end{gathered}$	$\begin{aligned} & \text { latit. } \\ & \text { los. } \end{aligned}$	$\underset{\text { latit. }}{\substack{\pi ’ s}}$	$\begin{gathered} \text { Q's } \\ \text { latit } \end{gathered}$	$\begin{aligned} & \text { ¢'s } \\ & \text { latit. } \end{aligned}$	5's declin.	$\begin{gathered} \text { 2's } \\ \text { declin. } \end{gathered}$	$\left\|\begin{array}{c} \sigma^{7 \prime \prime} \\ \text { declin. } \end{array}\right\|$	Q's declin.	$\left\|\begin{array}{c} \Varangle \\ \text { declin. } \end{array}\right\|$
1	$3 \bumpeq 43$	1 n 21	187	1 n 23	487	2 n 10	2185	18 ı 47	4 n 11	$27 \leq 27$	5844
7	32	120		$1 \quad 24$			2111	$18 \quad 37$	$2 \quad 46$	$27 \quad 36$	$8 \quad 24$
13	$3-5$	$1 \quad 19$	7	125	$4 \quad 2$	141	21.16	$18 \quad 27$	120	$\therefore 76$	1151
19	246	$1 \quad 19$	6	126	$\begin{array}{ll}3 & 47\end{array}$	14	$4{ }^{21} 21$	$18 \quad 16$	05	$26 \quad 59$	1522
25	$2 \quad 27$	118	5	126	$3 \quad 20$	$0 \quad 28$	$21 \quad 26$	18	129	$26 \quad 17$	$18 \quad 35$
$\left\|\begin{array}{l} \mathbf{M} \\ \mathbf{D} \end{array}\right\|$	$\begin{gathered} \text { Q's } \\ \text { longitude. } \end{gathered}$	\odot 's declin	$\begin{aligned} & \text { Clock } \\ & \mathrm{aft} . ~ © ~ \end{aligned}$	$\underset{\text { longit. }}{\text { D's }}$	$\begin{gathered} \text { D's } \\ \text { latir. } \end{gathered}$	declin.	$\begin{gathered} \boldsymbol{\zeta} \text { 's } \\ \text { longit. } \end{gathered}$	$\begin{gathered} 4 \text { 's } \\ \text { longit. } \end{gathered}$	$\sigma^{7 \prime \prime}$ longit	$\begin{gathered} \text { Y's } \\ \text { longit. } \end{gathered}$	$\begin{gathered} \text { ¢\%'s } \\ \text { longit. } \end{gathered}$
	M 8253	14 s 20	$16 \quad 13$	cho 42	5 n 12	18 s 15	13121	¢8ర39	$22 \mathrm{mb} 3:$	$24+30$	$19 \sim 46$
2	92547	14	$16 \quad 14$	$16 \quad 55$		$17 \quad 21$	1138	$28 \quad 32$	2316	$25 \quad 23$	20 4 4
3	102558	1458	$16 \quad 15$	$1 \mathrm{~mm}_{\mathrm{m}} 7$	$4 \quad 40$	$15 \quad 22$	213 33	$28 \quad 24$	$23 \quad 5 c$	$\begin{array}{ll}36 & 15\end{array}$	2147
\bigcirc	112610	$15 \cdot 17$	$16 \quad 14$	$15 \quad 18$	358	1228	13 139	2817	24 2S	37	23
5	122624	$15 \quad 35$	$16 \quad 13$	$29 \quad 24$	32	851	11346	$28 \quad 9$	25	$27 \quad 58$	2417
6	132639	$15 \quad 53$	1611	$13)$ ¢84	155	445	51352	28	$25 \quad 42$	2848	$25 \quad 35$
7	142655	$16 \quad 11$	$16 \quad 8$	2718	$0 \quad 42$	026	61359	$27 \quad 54$	2618	$29 \quad 37$	$26 \quad 55$
8	152714	$16 \quad 29$	$16 \quad 4$	$11 \gamma 3$	0 \% 32	3 n 53	3145	2746	2655	0 Vg 25	2818
9	162733	$16 \quad 46$	160	$24 \quad 39$	144	757	71412	$27 \quad 38$	2731	112	2944
10	172754	$17 \quad 4$	$15 \quad 54$	884	$2 \quad 49$	1132	21419	$27 \quad 30$	287	158	1 m 13
\bigcirc	18281	$17 \quad 20$	15 48	$21 \quad 15$	$3 \quad 44$	$14 \quad 29$	$14 \quad 25$	8722	2843	243	243
12	192842	$17 \quad 37$	15 41	4 II 12	$4 \quad 25$	$16 \quad 39$	$14 \quad 32$	2714	$\begin{array}{ll}49 & 19\end{array}$	$3 \quad 28$	$4 \quad 14$
13	20 29	$17 \quad 53$	$15 \quad 33$	$16 \quad 54$	$4 \quad 53$	17	714	$27 \quad 6$	$29 \quad 55$	412	5
14	212936	$18 \quad 9$	15	19	56	$18 \quad 21$	11446	26 58	0~32	$4 \quad 55$	718
15	22306	$18 \quad 25$	$15 \quad 15$	$11 \sigma_{0} 34$	5	$17 \quad 53$	31453	2650	18	$5 \quad 37$	$8 \quad 51$
16	$\begin{array}{llll}23 & 30 & 37\end{array}$	1840	154	$23 \quad 36$	$4 \quad 50$	$16 \quad 38$	81459	2642	144	$6 \quad 18$	$10 \quad 25$
17	243111	1855	$14 \quad 53$	$5 \Omega 30$	$4 \quad 23$	14.40	0156	$26 \quad 34$	$2 \quad 20$	6	$11 \quad 59$
18	- 2531146	1910	14 41	1720	$3 \quad 45$	12	51516	$26 \quad 26$	256	$7 \quad 35$	$13 \quad 33$
-	263223	$19 \quad 24$	1428	2912	257	9	01510	2617	$3 \quad 32$	8	i5 8
20	2733 2	1933	1414	11 mb 10	20	532	$215 \quad 26$	26	4	846	$16 \quad 42$
21	2833	19151	$13 \quad 59$	$23 \quad 20$			$615 \quad 33$	26	$4 \quad 44$	9	1816
22	29 342	$20 \quad 5$	1344	5^47	$0 \begin{aligned} & 0 \\ & 0\end{aligned}$	$2: 10$	015	25 53	$5 \begin{array}{ll}5 & 19\end{array}$	$9 \quad 53$	1951
23	1035	$20 \quad 18$	13 27	$18 \quad 34$	$1 \begin{array}{ll}1 & 17\end{array}$	6	61547	2545	5 5 5	1024	8126
24	173553	$20 \quad 30$	$13 \quad 10$	1 m 46	2 2\%	$9 \quad 52$	$215 \quad 54$	25	$6 \quad 31$	1054	231
\bigcirc	23542	$20 \quad 42$	12 52	$15 \quad 22$	322	$13 \quad 14$	4161	$25 \quad 28$	76	11123	32436
26	3373	$20 \quad 54$	1233	2922	$4 \quad 11$	$15 \quad 57$	7168	825	742	11	2611
27	4382	215	$512 \quad 14$	$13 ¢ 41$	$4 \quad 45$	1744	$416 \quad 15$	$25 \quad 12$	$8 \quad 18$	$12 \quad 15$	$27 \quad 45$
28	53911	2116	11154	2814	52	18 25	516 2\%	25	853	1238	82919
29		$21 \quad 27$	11133	$12 \mathrm{VP52}$	$4 \quad 59$	17 52	21689	94	$\begin{array}{ll}9 & 29\end{array}$	12	$0 \uparrow 54$
30	74056	$21 \quad 37$	$7 \left\lvert\, \begin{array}{ll} 11 & 11 \end{array}\right.$	$27 \quad 29$	$4 \quad 37$	16	$916 \quad 36$		105	b 1318	228
			E GE	EORGF	AN,	$R \mathrm{~N}$	EW	LAN			
Longitude.				Latitude.				Declination.			
	1st. 11	11th.	$21 s t$.	$18 t$.	11th.		21 st .	1st,	11th.		21st.
	M. 1314	50	15.28	0 n 21		21	0 gl	15847	715	58 16	$16 \cdot 9$

DECEMBER 1810.

[^0]: * I was witness tu a case not very dissimilar to this in its progress, though I hope less serious in the event. The good woman was a sailor's wife, travelling outside the stage, from Devonshire, with her little boy, to meet her husband at Purtsmouth. I was seated by her, and took great delight in my pretty little fellow-traveller, who was of an interesting age, just beginning to notice one's attention with smiles. At last, the evening set in very severe; and he was, as a matter of course, to undergo suffocation to prevent his taking cold. However, the young tar strove with might and main against it, and manfully he fought with his now wellknown enemy, the tremendous red cloak: but after several unsuccessful sorties, my persuasions to his mother failing to operate as a diversion in

[^1]: his favour, we were overmatched, and he was pent up clusely; a little more so, to shew that she knew how to manage her child, as the good women say. It was to no purpose he struggled, kicked, and screamed;to as little I remonstrated, begging her to observe how anxiously he desired to be in the fresh air, cold as it was. Her simple, taunting answer was, "Oh! I dare say, I warrant he does." She thought the boy very unreasonable not to submit to be stifled as usual; for what trouble should she have in nursing him if he caught cold! The fact was, the boy, by practice, knew more of pneumatics than his mother, or perhaps the whole sex, notwithstanding the Lecture Mania; and though in all probability he had formerly cried to bave his face çovered from the cold, not foreseeing the alternative, be was, by this time, assuredly grown wiser. I parted with them at Exeter, almost equally amused and vexed at the pertinacious adhesion to custom of the tender half of my species.

[^2]: * June, 1707.

[^3]: * In his 15th year.

